GlobalAveragePooling3D
類別keras.layers.GlobalAveragePooling3D(data_format=None, keepdims=False, **kwargs)
用於 3D 資料的全域平均池化操作。
引數
"channels_last"
或 "channels_first"
。輸入中維度的順序。"channels_last"
對應於形狀為 (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)
的輸入,而 "channels_first"
對應於形狀為 (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)
的輸入。預設值為在您的 Keras 設定檔 ~/.keras/keras.json
中找到的 image_data_format
值。如果您從未設定它,則預設為 "channels_last"
。keepdims
為 False
(預設值),則張量的秩會針對空間維度降低。如果 keepdims
為 True
,則空間維度會保留,長度為 1。此行為與 tf.reduce_mean
或 np.mean
相同。輸入形狀
data_format='channels_last'
:5D 張量,形狀為:(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
data_format='channels_first'
:5D 張量,形狀為:(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)
輸出形狀
keepdims=False
:2D 張量,形狀為 (batch_size, channels)
。keepdims=True
:- 如果 data_format="channels_last"
:5D 張量,形狀為 (batch_size, 1, 1, 1, channels)
- 如果 data_format="channels_first"
:5D 張量,形狀為 (batch_size, channels, 1, 1, 1)
範例
>>> x = np.random.rand(2, 4, 5, 4, 3)
>>> y = keras.layers.GlobalAveragePooling3D()(x)
>>> y.shape
(2, 3)