Keras 3 API 文件 / 層 API / 池化層 / GlobalMaxPooling3D 層

GlobalMaxPooling3D 層

[原始碼]

GlobalMaxPooling3D 類別

keras.layers.GlobalMaxPooling3D(data_format=None, keepdims=False, **kwargs)

用於 3D 資料的全域最大池化操作。

參數

  • data_format:字串,可以是 "channels_last""channels_first"。輸入中維度的順序。"channels_last" 對應於形狀為 (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels) 的輸入,而 "channels_first" 對應於形狀為 (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3) 的輸入。預設為在您的 Keras 設定檔 ~/.keras/keras.json 中找到的 image_data_format 值。如果您從未設定過,則將為 "channels_last"
  • keepdims:布林值,是否保留時間維度。如果 keepdimsFalse(預設),則張量的秩會針對空間維度而降低。如果 keepdimsTrue,則空間維度會保留,長度為 1。行為與 tf.reduce_meannp.mean 相同。

輸入形狀

  • 如果 data_format='channels_last':5D 張量,形狀為:(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
  • 如果 data_format='channels_first':5D 張量,形狀為:(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)

輸出形狀

  • 如果 keepdims=False:2D 張量,形狀為 (batch_size, channels)
  • 如果 keepdims=True:- 如果 data_format="channels_last":5D 張量,形狀為 (batch_size, 1, 1, 1, channels) - 如果 data_format="channels_first":5D 張量,形狀為 (batch_size, channels, 1, 1, 1)

範例

>>> x = np.random.rand(2, 4, 5, 4, 3)
>>> y = keras.layers.GlobalMaxPooling3D()(x)
>>> y.shape
(2, 3)