SimpleRNNCell
類別keras.layers.SimpleRNNCell(
units,
activation="tanh",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
seed=None,
**kwargs
)
SimpleRNN 的細胞類別。
此類別處理整個時間序列輸入中的一個步驟,而 keras.layer.SimpleRNN
處理整個序列。
參數
tanh
)。如果您傳遞 None
,則不應用激活函數(即「線性」激活函數:a(x) = x
)。True
),層是否應使用偏差向量。kernel
權重矩陣的初始化器,用於輸入的線性轉換。預設值:"glorot_uniform"
。recurrent_kernel
權重矩陣的初始化器,用於循環狀態的線性轉換。預設值:"orthogonal"
。"zeros"
。kernel
權重矩陣的正規化函數。預設值:None
。recurrent_kernel
權重矩陣的正規化函數。預設值:None
。None
。kernel
權重矩陣的約束函數。預設值:None
。recurrent_kernel
權重矩陣的約束函數。預設值:None
。None
。呼叫參數
(batch, features)
。(batch, units)
,這是來自前一個時間步的狀態。dropout
或 recurrent_dropout
時才相關。範例
inputs = np.random.random([32, 10, 8]).astype(np.float32)
rnn = keras.layers.RNN(keras.layers.SimpleRNNCell(4))
output = rnn(inputs) # The output has shape `(32, 4)`.
rnn = keras.layers.RNN(
keras.layers.SimpleRNNCell(4),
return_sequences=True,
return_state=True
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
whole_sequence_output, final_state = rnn(inputs)