程式碼範例 / 結構化資料 / 使用 Wide, Deep, 和 Cross 網路進行結構化資料學習

使用 Wide, Deep, 和 Cross 網路進行結構化資料學習

作者: Khalid Salama
建立日期 2020/12/31
上次修改日期 2025/01/03
描述: 使用 Wide & Deep 和 Deep & Cross 網路進行結構化資料分類。

ⓘ 本範例使用 Keras 3

在 Colab 中檢視 GitHub 原始碼


簡介

本範例示範如何使用兩種建模技術進行結構化資料分類

  1. Wide & Deep 模型
  2. Deep & Cross 模型

請注意,本範例應使用 TensorFlow 2.5 或更高版本執行。


資料集

本範例使用來自 UCI Machine Learning Repository 的 Covertype 資料集。任務是從製圖變數預測森林覆蓋類型。資料集包含 506,011 個實例,具有 12 個輸入特徵:10 個數值特徵和 2 個類別特徵。每個實例分為 7 個類別之一。


設定

import os

# Only the TensorFlow backend supports string inputs.
os.environ["KERAS_BACKEND"] = "tensorflow"

import math
import numpy as np
import pandas as pd
from tensorflow import data as tf_data
import keras
from keras import layers

準備資料

首先,讓我們從 UCI Machine Learning Repository 將資料集載入到 Pandas DataFrame 中

data_url = (
    "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
)
raw_data = pd.read_csv(data_url, header=None)
print(f"Dataset shape: {raw_data.shape}")
raw_data.head()
Dataset shape: (581012, 55)
0 1 2 3 4 5 6 7 8 9 ... 45 46 47 48 49 50 51 52 53 54
0 2596 51 3 258 0 510 221 232 148 6279 ... 0 0 0 0 0 0 0 0 0 5
1 2590 56 2 212 -6 390 220 235 151 6225 ... 0 0 0 0 0 0 0 0 0 5
2 2804 139 9 268 65 3180 234 238 135 6121 ... 0 0 0 0 0 0 0 0 0 2
3 2785 155 18 242 118 3090 238 238 122 6211 ... 0 0 0 0 0 0 0 0 0 2
4 2595 45 2 153 -1 391 220 234 150 6172 ... 0 0 0 0 0 0 0 0 0 5

5 列 × 55 行

資料集中的兩個類別特徵以二元編碼。我們將把此資料集表示法轉換為典型表示法,其中每個類別特徵都表示為單一整數值。

soil_type_values = [f"soil_type_{idx+1}" for idx in range(40)]
wilderness_area_values = [f"area_type_{idx+1}" for idx in range(4)]

soil_type = raw_data.loc[:, 14:53].apply(
    lambda x: soil_type_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)
wilderness_area = raw_data.loc[:, 10:13].apply(
    lambda x: wilderness_area_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)

CSV_HEADER = [
    "Elevation",
    "Aspect",
    "Slope",
    "Horizontal_Distance_To_Hydrology",
    "Vertical_Distance_To_Hydrology",
    "Horizontal_Distance_To_Roadways",
    "Hillshade_9am",
    "Hillshade_Noon",
    "Hillshade_3pm",
    "Horizontal_Distance_To_Fire_Points",
    "Wilderness_Area",
    "Soil_Type",
    "Cover_Type",
]

data = pd.concat(
    [raw_data.loc[:, 0:9], wilderness_area, soil_type, raw_data.loc[:, 54]],
    axis=1,
    ignore_index=True,
)
data.columns = CSV_HEADER

# Convert the target label indices into a range from 0 to 6 (there are 7 labels in total).
data["Cover_Type"] = data["Cover_Type"] - 1

print(f"Dataset shape: {data.shape}")
data.head().T
Dataset shape: (581012, 13)
0 1 2 3 4
海拔 2596 2590 2804 2785 2595
坡向 51 56 139 155 45
坡度 3 2 9 18 2
到水文的水平距離 258 212 268 242 153
到水文的垂直距離 0 -6 65 118 -1
到道路的水平距離 510 390 3180 3090 391
上午 9 點山陰 221 220 234 238 220
中午山陰 232 235 238 238 234
下午 3 點山陰 148 151 135 122 150
到火點的水平距離 6279 6225 6121 6211 6172
荒野區域 區域類型 1 區域類型 1 區域類型 1 區域類型 1 區域類型 1
土壤類型 土壤類型 29 土壤類型 29 土壤類型 12 土壤類型 30 土壤類型 29
覆蓋類型 4 4 1 1 4

DataFrame 的形狀顯示每個樣本有 13 行(12 行用於特徵,1 行用於目標標籤)。

讓我們將資料分割成訓練集 (85%) 和測試集 (15%)。

train_splits = []
test_splits = []

for _, group_data in data.groupby("Cover_Type"):
    random_selection = np.random.rand(len(group_data.index)) <= 0.85
    train_splits.append(group_data[random_selection])
    test_splits.append(group_data[~random_selection])

train_data = pd.concat(train_splits).sample(frac=1).reset_index(drop=True)
test_data = pd.concat(test_splits).sample(frac=1).reset_index(drop=True)

print(f"Train split size: {len(train_data.index)}")
print(f"Test split size: {len(test_data.index)}")
Train split size: 494149
Test split size: 86863

接下來,將訓練和測試資料儲存在個別的 CSV 檔案中。

train_data_file = "train_data.csv"
test_data_file = "test_data.csv"

train_data.to_csv(train_data_file, index=False)
test_data.to_csv(test_data_file, index=False)

定義資料集元數據

在這裡,我們定義資料集的元數據,這些元數據對於將資料讀取和解析為輸入特徵,以及根據其類型編碼輸入特徵非常有用。

TARGET_FEATURE_NAME = "Cover_Type"

TARGET_FEATURE_LABELS = ["0", "1", "2", "3", "4", "5", "6"]

NUMERIC_FEATURE_NAMES = [
    "Aspect",
    "Elevation",
    "Hillshade_3pm",
    "Hillshade_9am",
    "Hillshade_Noon",
    "Horizontal_Distance_To_Fire_Points",
    "Horizontal_Distance_To_Hydrology",
    "Horizontal_Distance_To_Roadways",
    "Slope",
    "Vertical_Distance_To_Hydrology",
]

CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    "Soil_Type": list(data["Soil_Type"].unique()),
    "Wilderness_Area": list(data["Wilderness_Area"].unique()),
}

CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())

FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES

COLUMN_DEFAULTS = [
    [0] if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME] else ["NA"]
    for feature_name in CSV_HEADER
]

NUM_CLASSES = len(TARGET_FEATURE_LABELS)

實驗設定

接下來,讓我們定義一個輸入函數,該函數讀取並解析檔案,然後將特徵和標籤轉換為 tf.data.Dataset 以進行訓練或評估。

# To convert the datasets elements to from OrderedDict to Dictionary
def process(features, target):
    return dict(features), target


def get_dataset_from_csv(csv_file_path, batch_size, shuffle=False):
    dataset = tf_data.experimental.make_csv_dataset(
        csv_file_path,
        batch_size=batch_size,
        column_names=CSV_HEADER,
        column_defaults=COLUMN_DEFAULTS,
        label_name=TARGET_FEATURE_NAME,
        num_epochs=1,
        header=True,
        shuffle=shuffle,
    ).map(process)
    return dataset.cache()

在這裡,我們配置參數並實作程序,以針對給定模型執行訓練和評估實驗。

learning_rate = 0.001
dropout_rate = 0.1
batch_size = 265
num_epochs = 1

hidden_units = [32, 32]


def run_experiment(model):
    model.compile(
        optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
        loss=keras.losses.SparseCategoricalCrossentropy(),
        metrics=[keras.metrics.SparseCategoricalAccuracy()],
    )

    train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True)

    test_dataset = get_dataset_from_csv(test_data_file, batch_size)

    print("Start training the model...")
    history = model.fit(train_dataset, epochs=num_epochs)
    print("Model training finished")

    _, accuracy = model.evaluate(test_dataset, verbose=0)

    print(f"Test accuracy: {round(accuracy * 100, 2)}%")

建立模型輸入

現在,將模型的輸入定義為字典,其中鍵是特徵名稱,值是具有相應特徵形狀和資料類型的 keras.layers.Input 張量。

def create_model_inputs():
    inputs = {}
    for feature_name in FEATURE_NAMES:
        if feature_name in NUMERIC_FEATURE_NAMES:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="float32"
            )
        else:
            inputs[feature_name] = layers.Input(
                name=feature_name, shape=(), dtype="string"
            )
    return inputs

編碼特徵

我們為輸入特徵建立兩種表示形式:稀疏和密集:1. 在稀疏表示形式中,類別特徵使用 CategoryEncoding 層以 one-hot 編碼進行編碼。這種表示形式對於模型記憶特定特徵值以做出某些預測可能很有用。2. 在密集表示形式中,類別特徵使用 Embedding 層以低維度嵌入進行編碼。這種表示形式有助於模型很好地泛化到看不見的特徵組合。

def encode_inputs(inputs, use_embedding=False):
    encoded_features = []
    for feature_name in inputs:
        if feature_name in CATEGORICAL_FEATURE_NAMES:
            vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
            # Create a lookup to convert string values to an integer indices.
            # Since we are not using a mask token nor expecting any out of vocabulary
            # (oov) token, we set mask_token to None and  num_oov_indices to 0.
            lookup = layers.StringLookup(
                vocabulary=vocabulary,
                mask_token=None,
                num_oov_indices=0,
                output_mode="int" if use_embedding else "binary",
            )
            if use_embedding:
                # Convert the string input values into integer indices.
                encoded_feature = lookup(inputs[feature_name])
                embedding_dims = int(math.sqrt(len(vocabulary)))
                # Create an embedding layer with the specified dimensions.
                embedding = layers.Embedding(
                    input_dim=len(vocabulary), output_dim=embedding_dims
                )
                # Convert the index values to embedding representations.
                encoded_feature = embedding(encoded_feature)
            else:
                # Convert the string input values into a one hot encoding.
                encoded_feature = lookup(
                    keras.ops.expand_dims(inputs[feature_name], -1)
                )
        else:
            # Use the numerical features as-is.
            encoded_feature = keras.ops.expand_dims(inputs[feature_name], -1)

        encoded_features.append(encoded_feature)

    all_features = layers.concatenate(encoded_features)
    return all_features

實驗 1:基準模型

在第一個實驗中,讓我們建立一個多層前饋網路,其中類別特徵是 one-hot 編碼的。

def create_baseline_model():
    inputs = create_model_inputs()
    features = encode_inputs(inputs)

    for units in hidden_units:
        features = layers.Dense(units)(features)
        features = layers.BatchNormalization()(features)
        features = layers.ReLU()(features)
        features = layers.Dropout(dropout_rate)(features)

    outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


baseline_model = create_baseline_model()
keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR")

png

讓我們執行它

run_experiment(baseline_model)
Start training the model...
  1/Unknown  6s 6s/step - loss: 2.2346 - sparse_categorical_accuracy: 0.1472


  2/Unknown  6s 263ms/step - loss: 2.2343 - sparse_categorical_accuracy: 0.1519


  3/Unknown  6s 267ms/step - loss: 2.2241 - sparse_categorical_accuracy: 0.1549


  4/Unknown  7s 256ms/step - loss: 2.2228 - sparse_categorical_accuracy: 0.1544


  5/Unknown  7s 256ms/step - loss: 2.2205 - sparse_categorical_accuracy: 0.1546


  6/Unknown  7s 253ms/step - loss: 2.2183 - sparse_categorical_accuracy: 0.1556


  7/Unknown  7s 250ms/step - loss: 2.2135 - sparse_categorical_accuracy: 0.1571


  8/Unknown  8s 247ms/step - loss: 2.2093 - sparse_categorical_accuracy: 0.1584


  9/Unknown  8s 242ms/step - loss: 2.2049 - sparse_categorical_accuracy: 0.1596


 10/Unknown  8s 238ms/step - loss: 2.2003 - sparse_categorical_accuracy: 0.1610


 11/Unknown  8s 236ms/step - loss: 2.1958 - sparse_categorical_accuracy: 0.1626


 12/Unknown  8s 235ms/step - loss: 2.1911 - sparse_categorical_accuracy: 0.1641


 13/Unknown  9s 231ms/step - loss: 2.1862 - sparse_categorical_accuracy: 0.1657


 14/Unknown  9s 228ms/step - loss: 2.1811 - sparse_categorical_accuracy: 0.1676


 15/Unknown  9s 224ms/step - loss: 2.1761 - sparse_categorical_accuracy: 0.1694


 16/Unknown  9s 222ms/step - loss: 2.1707 - sparse_categorical_accuracy: 0.1713


 17/Unknown  9s 220ms/step - loss: 2.1650 - sparse_categorical_accuracy: 0.1734


 18/Unknown  10s 219ms/step - loss: 2.1592 - sparse_categorical_accuracy: 0.1754


 19/Unknown  10s 218ms/step - loss: 2.1535 - sparse_categorical_accuracy: 0.1773


 20/Unknown  10s 218ms/step - loss: 2.1476 - sparse_categorical_accuracy: 0.1792


 21/Unknown  10s 218ms/step - loss: 2.1416 - sparse_categorical_accuracy: 0.1812


 22/Unknown  10s 218ms/step - loss: 2.1355 - sparse_categorical_accuracy: 0.1834


 23/Unknown  11s 218ms/step - loss: 2.1295 - sparse_categorical_accuracy: 0.1855


 24/Unknown  11s 219ms/step - loss: 2.1235 - sparse_categorical_accuracy: 0.1876


 25/Unknown  11s 219ms/step - loss: 2.1174 - sparse_categorical_accuracy: 0.1897


 26/Unknown  11s 219ms/step - loss: 2.1114 - sparse_categorical_accuracy: 0.1918


 27/Unknown  12s 219ms/step - loss: 2.1054 - sparse_categorical_accuracy: 0.1940


 28/Unknown  12s 218ms/step - loss: 2.0995 - sparse_categorical_accuracy: 0.1961


 29/Unknown  12s 218ms/step - loss: 2.0936 - sparse_categorical_accuracy: 0.1982


 30/Unknown  12s 219ms/step - loss: 2.0878 - sparse_categorical_accuracy: 0.2004


 31/Unknown  12s 219ms/step - loss: 2.0819 - sparse_categorical_accuracy: 0.2026


 32/Unknown  13s 219ms/step - loss: 2.0761 - sparse_categorical_accuracy: 0.2049


 33/Unknown  13s 219ms/step - loss: 2.0703 - sparse_categorical_accuracy: 0.2071


 34/Unknown  13s 220ms/step - loss: 2.0645 - sparse_categorical_accuracy: 0.2094


 35/Unknown  13s 220ms/step - loss: 2.0588 - sparse_categorical_accuracy: 0.2117


 36/Unknown  14s 220ms/step - loss: 2.0531 - sparse_categorical_accuracy: 0.2140


 37/Unknown  14s 221ms/step - loss: 2.0475 - sparse_categorical_accuracy: 0.2163


 38/Unknown  14s 220ms/step - loss: 2.0419 - sparse_categorical_accuracy: 0.2186


 39/Unknown  14s 221ms/step - loss: 2.0364 - sparse_categorical_accuracy: 0.2209


 40/Unknown  14s 221ms/step - loss: 2.0308 - sparse_categorical_accuracy: 0.2233


 41/Unknown  15s 220ms/step - loss: 2.0252 - sparse_categorical_accuracy: 0.2256


 42/Unknown  15s 221ms/step - loss: 2.0198 - sparse_categorical_accuracy: 0.2280


 43/Unknown  15s 221ms/step - loss: 2.0143 - sparse_categorical_accuracy: 0.2303


 44/Unknown  15s 221ms/step - loss: 2.0089 - sparse_categorical_accuracy: 0.2326


 45/Unknown  16s 221ms/step - loss: 2.0035 - sparse_categorical_accuracy: 0.2348


 46/Unknown  16s 222ms/step - loss: 1.9982 - sparse_categorical_accuracy: 0.2371


 47/Unknown  16s 221ms/step - loss: 1.9929 - sparse_categorical_accuracy: 0.2393


 48/Unknown  16s 221ms/step - loss: 1.9877 - sparse_categorical_accuracy: 0.2416


 49/Unknown  16s 222ms/step - loss: 1.9824 - sparse_categorical_accuracy: 0.2438


 50/Unknown  17s 222ms/step - loss: 1.9773 - sparse_categorical_accuracy: 0.2460


 51/Unknown  17s 223ms/step - loss: 1.9721 - sparse_categorical_accuracy: 0.2481


 52/Unknown  17s 223ms/step - loss: 1.9670 - sparse_categorical_accuracy: 0.2503


 53/Unknown  17s 224ms/step - loss: 1.9620 - sparse_categorical_accuracy: 0.2525


 54/Unknown  18s 224ms/step - loss: 1.9569 - sparse_categorical_accuracy: 0.2546


 55/Unknown  18s 225ms/step - loss: 1.9519 - sparse_categorical_accuracy: 0.2568


 56/Unknown  18s 226ms/step - loss: 1.9470 - sparse_categorical_accuracy: 0.2589


 57/Unknown  18s 226ms/step - loss: 1.9421 - sparse_categorical_accuracy: 0.2610


 58/Unknown  19s 226ms/step - loss: 1.9373 - sparse_categorical_accuracy: 0.2631


 59/Unknown  19s 226ms/step - loss: 1.9324 - sparse_categorical_accuracy: 0.2652


 60/Unknown  19s 226ms/step - loss: 1.9276 - sparse_categorical_accuracy: 0.2673


 61/Unknown  19s 227ms/step - loss: 1.9229 - sparse_categorical_accuracy: 0.2694


 62/Unknown  20s 227ms/step - loss: 1.9182 - sparse_categorical_accuracy: 0.2714


 63/Unknown  20s 227ms/step - loss: 1.9136 - sparse_categorical_accuracy: 0.2734


 64/Unknown  20s 228ms/step - loss: 1.9090 - sparse_categorical_accuracy: 0.2754


 65/Unknown  20s 228ms/step - loss: 1.9044 - sparse_categorical_accuracy: 0.2774


 66/Unknown  21s 229ms/step - loss: 1.8999 - sparse_categorical_accuracy: 0.2794


 67/Unknown  21s 229ms/step - loss: 1.8954 - sparse_categorical_accuracy: 0.2813


 68/Unknown  21s 229ms/step - loss: 1.8910 - sparse_categorical_accuracy: 0.2832


 69/Unknown  21s 229ms/step - loss: 1.8866 - sparse_categorical_accuracy: 0.2852


 70/Unknown  22s 229ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.2870


 71/Unknown  22s 229ms/step - loss: 1.8779 - sparse_categorical_accuracy: 0.2889


 72/Unknown  22s 230ms/step - loss: 1.8736 - sparse_categorical_accuracy: 0.2908


 73/Unknown  22s 230ms/step - loss: 1.8694 - sparse_categorical_accuracy: 0.2926


 74/Unknown  23s 230ms/step - loss: 1.8652 - sparse_categorical_accuracy: 0.2945


 75/Unknown  23s 230ms/step - loss: 1.8611 - sparse_categorical_accuracy: 0.2963


 76/Unknown  23s 230ms/step - loss: 1.8569 - sparse_categorical_accuracy: 0.2980


 77/Unknown  23s 230ms/step - loss: 1.8529 - sparse_categorical_accuracy: 0.2998


 78/Unknown  23s 229ms/step - loss: 1.8488 - sparse_categorical_accuracy: 0.3015


 79/Unknown  24s 229ms/step - loss: 1.8448 - sparse_categorical_accuracy: 0.3033


 80/Unknown  24s 229ms/step - loss: 1.8408 - sparse_categorical_accuracy: 0.3050


 81/Unknown  24s 228ms/step - loss: 1.8369 - sparse_categorical_accuracy: 0.3067


 82/Unknown  24s 228ms/step - loss: 1.8329 - sparse_categorical_accuracy: 0.3084


 83/Unknown  24s 228ms/step - loss: 1.8290 - sparse_categorical_accuracy: 0.3100


 84/Unknown  25s 227ms/step - loss: 1.8251 - sparse_categorical_accuracy: 0.3117


 85/Unknown  25s 227ms/step - loss: 1.8213 - sparse_categorical_accuracy: 0.3133


 86/Unknown  25s 227ms/step - loss: 1.8175 - sparse_categorical_accuracy: 0.3149


 87/Unknown  25s 227ms/step - loss: 1.8137 - sparse_categorical_accuracy: 0.3165


 88/Unknown  26s 227ms/step - loss: 1.8099 - sparse_categorical_accuracy: 0.3181


 89/Unknown  26s 227ms/step - loss: 1.8062 - sparse_categorical_accuracy: 0.3197


 90/Unknown  26s 226ms/step - loss: 1.8025 - sparse_categorical_accuracy: 0.3213


 91/Unknown  26s 226ms/step - loss: 1.7988 - sparse_categorical_accuracy: 0.3228


 92/Unknown  26s 226ms/step - loss: 1.7952 - sparse_categorical_accuracy: 0.3243


 93/Unknown  27s 226ms/step - loss: 1.7916 - sparse_categorical_accuracy: 0.3258


 94/Unknown  27s 226ms/step - loss: 1.7880 - sparse_categorical_accuracy: 0.3273


 95/Unknown  27s 226ms/step - loss: 1.7845 - sparse_categorical_accuracy: 0.3288


 96/Unknown  27s 226ms/step - loss: 1.7810 - sparse_categorical_accuracy: 0.3303


 97/Unknown  28s 226ms/step - loss: 1.7775 - sparse_categorical_accuracy: 0.3317


 98/Unknown  28s 226ms/step - loss: 1.7741 - sparse_categorical_accuracy: 0.3331


 99/Unknown  28s 227ms/step - loss: 1.7706 - sparse_categorical_accuracy: 0.3345


100/Unknown  28s 227ms/step - loss: 1.7672 - sparse_categorical_accuracy: 0.3359


101/Unknown  29s 227ms/step - loss: 1.7639 - sparse_categorical_accuracy: 0.3373


102/Unknown  29s 228ms/step - loss: 1.7605 - sparse_categorical_accuracy: 0.3387


103/Unknown  29s 228ms/step - loss: 1.7572 - sparse_categorical_accuracy: 0.3401


104/Unknown  29s 228ms/step - loss: 1.7539 - sparse_categorical_accuracy: 0.3414


105/Unknown  30s 228ms/step - loss: 1.7507 - sparse_categorical_accuracy: 0.3428


106/Unknown  30s 229ms/step - loss: 1.7474 - sparse_categorical_accuracy: 0.3441


107/Unknown  30s 228ms/step - loss: 1.7442 - sparse_categorical_accuracy: 0.3454


108/Unknown  30s 228ms/step - loss: 1.7411 - sparse_categorical_accuracy: 0.3467


109/Unknown  30s 228ms/step - loss: 1.7379 - sparse_categorical_accuracy: 0.3480


110/Unknown  31s 228ms/step - loss: 1.7348 - sparse_categorical_accuracy: 0.3493


111/Unknown  31s 228ms/step - loss: 1.7317 - sparse_categorical_accuracy: 0.3505


112/Unknown  31s 228ms/step - loss: 1.7286 - sparse_categorical_accuracy: 0.3518


113/Unknown  31s 228ms/step - loss: 1.7255 - sparse_categorical_accuracy: 0.3530


114/Unknown  32s 228ms/step - loss: 1.7225 - sparse_categorical_accuracy: 0.3543


115/Unknown  32s 228ms/step - loss: 1.7195 - sparse_categorical_accuracy: 0.3555


116/Unknown  32s 228ms/step - loss: 1.7165 - sparse_categorical_accuracy: 0.3567


117/Unknown  32s 229ms/step - loss: 1.7135 - sparse_categorical_accuracy: 0.3579


118/Unknown  33s 229ms/step - loss: 1.7106 - sparse_categorical_accuracy: 0.3591


119/Unknown  33s 229ms/step - loss: 1.7077 - sparse_categorical_accuracy: 0.3602


120/Unknown  33s 229ms/step - loss: 1.7048 - sparse_categorical_accuracy: 0.3614


121/Unknown  33s 230ms/step - loss: 1.7019 - sparse_categorical_accuracy: 0.3626


122/Unknown  34s 229ms/step - loss: 1.6991 - sparse_categorical_accuracy: 0.3637


123/Unknown  34s 229ms/step - loss: 1.6962 - sparse_categorical_accuracy: 0.3648


124/Unknown  34s 229ms/step - loss: 1.6934 - sparse_categorical_accuracy: 0.3660


125/Unknown  34s 229ms/step - loss: 1.6907 - sparse_categorical_accuracy: 0.3671


126/Unknown  34s 229ms/step - loss: 1.6879 - sparse_categorical_accuracy: 0.3682


127/Unknown  35s 229ms/step - loss: 1.6851 - sparse_categorical_accuracy: 0.3693


128/Unknown  35s 229ms/step - loss: 1.6824 - sparse_categorical_accuracy: 0.3704


129/Unknown  35s 229ms/step - loss: 1.6797 - sparse_categorical_accuracy: 0.3715


130/Unknown  35s 228ms/step - loss: 1.6770 - sparse_categorical_accuracy: 0.3725


131/Unknown  35s 228ms/step - loss: 1.6743 - sparse_categorical_accuracy: 0.3736


132/Unknown  36s 228ms/step - loss: 1.6717 - sparse_categorical_accuracy: 0.3746


133/Unknown  36s 227ms/step - loss: 1.6691 - sparse_categorical_accuracy: 0.3757


134/Unknown  36s 227ms/step - loss: 1.6665 - sparse_categorical_accuracy: 0.3767


135/Unknown  36s 227ms/step - loss: 1.6639 - sparse_categorical_accuracy: 0.3777


136/Unknown  36s 227ms/step - loss: 1.6613 - sparse_categorical_accuracy: 0.3788


137/Unknown  37s 227ms/step - loss: 1.6587 - sparse_categorical_accuracy: 0.3798


138/Unknown  37s 227ms/step - loss: 1.6562 - sparse_categorical_accuracy: 0.3808


139/Unknown  37s 227ms/step - loss: 1.6537 - sparse_categorical_accuracy: 0.3818


140/Unknown  37s 227ms/step - loss: 1.6512 - sparse_categorical_accuracy: 0.3828


141/Unknown  38s 227ms/step - loss: 1.6487 - sparse_categorical_accuracy: 0.3837


142/Unknown  38s 227ms/step - loss: 1.6463 - sparse_categorical_accuracy: 0.3847


143/Unknown  38s 227ms/step - loss: 1.6438 - sparse_categorical_accuracy: 0.3857


144/Unknown  38s 227ms/step - loss: 1.6414 - sparse_categorical_accuracy: 0.3866


145/Unknown  39s 227ms/step - loss: 1.6390 - sparse_categorical_accuracy: 0.3876


146/Unknown  39s 227ms/step - loss: 1.6366 - sparse_categorical_accuracy: 0.3885


147/Unknown  39s 227ms/step - loss: 1.6342 - sparse_categorical_accuracy: 0.3894


148/Unknown  39s 227ms/step - loss: 1.6318 - sparse_categorical_accuracy: 0.3904


149/Unknown  39s 228ms/step - loss: 1.6295 - sparse_categorical_accuracy: 0.3913


150/Unknown  40s 228ms/step - loss: 1.6271 - sparse_categorical_accuracy: 0.3922


151/Unknown  40s 228ms/step - loss: 1.6248 - sparse_categorical_accuracy: 0.3931


152/Unknown  40s 228ms/step - loss: 1.6225 - sparse_categorical_accuracy: 0.3940


153/Unknown  40s 228ms/step - loss: 1.6202 - sparse_categorical_accuracy: 0.3949


154/Unknown  41s 228ms/step - loss: 1.6179 - sparse_categorical_accuracy: 0.3958


155/Unknown  41s 228ms/step - loss: 1.6156 - sparse_categorical_accuracy: 0.3967


156/Unknown  41s 228ms/step - loss: 1.6134 - sparse_categorical_accuracy: 0.3975


157/Unknown  41s 229ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.3984


158/Unknown  42s 229ms/step - loss: 1.6089 - sparse_categorical_accuracy: 0.3993


159/Unknown  42s 229ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4001


160/Unknown  42s 229ms/step - loss: 1.6045 - sparse_categorical_accuracy: 0.4010


161/Unknown  42s 229ms/step - loss: 1.6023 - sparse_categorical_accuracy: 0.4018


162/Unknown  43s 229ms/step - loss: 1.6002 - sparse_categorical_accuracy: 0.4027


163/Unknown  43s 229ms/step - loss: 1.5980 - sparse_categorical_accuracy: 0.4035


164/Unknown  43s 229ms/step - loss: 1.5959 - sparse_categorical_accuracy: 0.4043


165/Unknown  43s 229ms/step - loss: 1.5938 - sparse_categorical_accuracy: 0.4051


166/Unknown  44s 230ms/step - loss: 1.5916 - sparse_categorical_accuracy: 0.4060


167/Unknown  44s 230ms/step - loss: 1.5895 - sparse_categorical_accuracy: 0.4068


168/Unknown  44s 230ms/step - loss: 1.5875 - sparse_categorical_accuracy: 0.4076


169/Unknown  44s 230ms/step - loss: 1.5854 - sparse_categorical_accuracy: 0.4084


170/Unknown  45s 230ms/step - loss: 1.5833 - sparse_categorical_accuracy: 0.4092


171/Unknown  45s 230ms/step - loss: 1.5813 - sparse_categorical_accuracy: 0.4099


172/Unknown  45s 230ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4107


173/Unknown  45s 230ms/step - loss: 1.5772 - sparse_categorical_accuracy: 0.4115


174/Unknown  46s 230ms/step - loss: 1.5752 - sparse_categorical_accuracy: 0.4123


175/Unknown  46s 229ms/step - loss: 1.5732 - sparse_categorical_accuracy: 0.4130


176/Unknown  46s 229ms/step - loss: 1.5712 - sparse_categorical_accuracy: 0.4138


177/Unknown  46s 229ms/step - loss: 1.5692 - sparse_categorical_accuracy: 0.4146


178/Unknown  46s 230ms/step - loss: 1.5673 - sparse_categorical_accuracy: 0.4153


179/Unknown  47s 230ms/step - loss: 1.5653 - sparse_categorical_accuracy: 0.4160


180/Unknown  47s 230ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4168


181/Unknown  47s 230ms/step - loss: 1.5615 - sparse_categorical_accuracy: 0.4175


182/Unknown  47s 230ms/step - loss: 1.5596 - sparse_categorical_accuracy: 0.4182


183/Unknown  48s 230ms/step - loss: 1.5577 - sparse_categorical_accuracy: 0.4189


184/Unknown  48s 230ms/step - loss: 1.5558 - sparse_categorical_accuracy: 0.4197


185/Unknown  48s 230ms/step - loss: 1.5539 - sparse_categorical_accuracy: 0.4204


186/Unknown  48s 230ms/step - loss: 1.5520 - sparse_categorical_accuracy: 0.4211


187/Unknown  49s 230ms/step - loss: 1.5502 - sparse_categorical_accuracy: 0.4218


188/Unknown  49s 230ms/step - loss: 1.5483 - sparse_categorical_accuracy: 0.4225


189/Unknown  49s 230ms/step - loss: 1.5465 - sparse_categorical_accuracy: 0.4232


190/Unknown  49s 230ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4239


191/Unknown  50s 231ms/step - loss: 1.5428 - sparse_categorical_accuracy: 0.4245


192/Unknown  50s 231ms/step - loss: 1.5410 - sparse_categorical_accuracy: 0.4252


193/Unknown  50s 231ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4259


194/Unknown  50s 231ms/step - loss: 1.5375 - sparse_categorical_accuracy: 0.4266


195/Unknown  51s 231ms/step - loss: 1.5357 - sparse_categorical_accuracy: 0.4272


196/Unknown  51s 231ms/step - loss: 1.5339 - sparse_categorical_accuracy: 0.4279


197/Unknown  51s 232ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4286


198/Unknown  51s 232ms/step - loss: 1.5304 - sparse_categorical_accuracy: 0.4292


199/Unknown  52s 232ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4299


200/Unknown  52s 232ms/step - loss: 1.5270 - sparse_categorical_accuracy: 0.4305


201/Unknown  52s 232ms/step - loss: 1.5252 - sparse_categorical_accuracy: 0.4312


202/Unknown  52s 232ms/step - loss: 1.5235 - sparse_categorical_accuracy: 0.4318


203/Unknown  53s 232ms/step - loss: 1.5218 - sparse_categorical_accuracy: 0.4324


204/Unknown  53s 232ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4331


205/Unknown  53s 232ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4337


206/Unknown  53s 232ms/step - loss: 1.5168 - sparse_categorical_accuracy: 0.4343


207/Unknown  54s 232ms/step - loss: 1.5151 - sparse_categorical_accuracy: 0.4349


208/Unknown  54s 232ms/step - loss: 1.5135 - sparse_categorical_accuracy: 0.4355


209/Unknown  54s 232ms/step - loss: 1.5118 - sparse_categorical_accuracy: 0.4361


210/Unknown  54s 232ms/step - loss: 1.5102 - sparse_categorical_accuracy: 0.4368


211/Unknown  54s 232ms/step - loss: 1.5086 - sparse_categorical_accuracy: 0.4374


212/Unknown  55s 232ms/step - loss: 1.5069 - sparse_categorical_accuracy: 0.4380


213/Unknown  55s 232ms/step - loss: 1.5053 - sparse_categorical_accuracy: 0.4385


214/Unknown  55s 232ms/step - loss: 1.5037 - sparse_categorical_accuracy: 0.4391


215/Unknown  55s 232ms/step - loss: 1.5021 - sparse_categorical_accuracy: 0.4397


216/Unknown  56s 232ms/step - loss: 1.5005 - sparse_categorical_accuracy: 0.4403


217/Unknown  56s 232ms/step - loss: 1.4990 - sparse_categorical_accuracy: 0.4409


218/Unknown  56s 232ms/step - loss: 1.4974 - sparse_categorical_accuracy: 0.4415


219/Unknown  56s 232ms/step - loss: 1.4958 - sparse_categorical_accuracy: 0.4420


220/Unknown  57s 232ms/step - loss: 1.4943 - sparse_categorical_accuracy: 0.4426


221/Unknown  57s 232ms/step - loss: 1.4927 - sparse_categorical_accuracy: 0.4432


222/Unknown  57s 232ms/step - loss: 1.4912 - sparse_categorical_accuracy: 0.4438


223/Unknown  57s 232ms/step - loss: 1.4896 - sparse_categorical_accuracy: 0.4443


224/Unknown  58s 232ms/step - loss: 1.4881 - sparse_categorical_accuracy: 0.4449


225/Unknown  58s 232ms/step - loss: 1.4866 - sparse_categorical_accuracy: 0.4454


226/Unknown  58s 232ms/step - loss: 1.4851 - sparse_categorical_accuracy: 0.4460


227/Unknown  58s 232ms/step - loss: 1.4836 - sparse_categorical_accuracy: 0.4465


228/Unknown  59s 233ms/step - loss: 1.4821 - sparse_categorical_accuracy: 0.4471


229/Unknown  59s 233ms/step - loss: 1.4806 - sparse_categorical_accuracy: 0.4476


230/Unknown  59s 233ms/step - loss: 1.4791 - sparse_categorical_accuracy: 0.4482


231/Unknown  60s 234ms/step - loss: 1.4776 - sparse_categorical_accuracy: 0.4487


232/Unknown  60s 234ms/step - loss: 1.4761 - sparse_categorical_accuracy: 0.4492


233/Unknown  60s 234ms/step - loss: 1.4747 - sparse_categorical_accuracy: 0.4498


234/Unknown  60s 234ms/step - loss: 1.4732 - sparse_categorical_accuracy: 0.4503


235/Unknown  61s 234ms/step - loss: 1.4718 - sparse_categorical_accuracy: 0.4508


236/Unknown  61s 234ms/step - loss: 1.4703 - sparse_categorical_accuracy: 0.4513


237/Unknown  61s 234ms/step - loss: 1.4689 - sparse_categorical_accuracy: 0.4519


238/Unknown  61s 235ms/step - loss: 1.4675 - sparse_categorical_accuracy: 0.4524


239/Unknown  62s 235ms/step - loss: 1.4661 - sparse_categorical_accuracy: 0.4529


240/Unknown  62s 235ms/step - loss: 1.4646 - sparse_categorical_accuracy: 0.4534


241/Unknown  62s 235ms/step - loss: 1.4632 - sparse_categorical_accuracy: 0.4539


242/Unknown  62s 235ms/step - loss: 1.4618 - sparse_categorical_accuracy: 0.4544


243/Unknown  63s 235ms/step - loss: 1.4604 - sparse_categorical_accuracy: 0.4549


244/Unknown  63s 235ms/step - loss: 1.4591 - sparse_categorical_accuracy: 0.4554


245/Unknown  63s 235ms/step - loss: 1.4577 - sparse_categorical_accuracy: 0.4559


246/Unknown  63s 235ms/step - loss: 1.4563 - sparse_categorical_accuracy: 0.4564


247/Unknown  64s 235ms/step - loss: 1.4549 - sparse_categorical_accuracy: 0.4569


248/Unknown  64s 235ms/step - loss: 1.4536 - sparse_categorical_accuracy: 0.4574


249/Unknown  64s 235ms/step - loss: 1.4522 - sparse_categorical_accuracy: 0.4579


250/Unknown  64s 235ms/step - loss: 1.4509 - sparse_categorical_accuracy: 0.4584


251/Unknown  65s 235ms/step - loss: 1.4495 - sparse_categorical_accuracy: 0.4589


252/Unknown  65s 235ms/step - loss: 1.4482 - sparse_categorical_accuracy: 0.4593


253/Unknown  65s 235ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4598


254/Unknown  65s 235ms/step - loss: 1.4455 - sparse_categorical_accuracy: 0.4603


255/Unknown  65s 235ms/step - loss: 1.4442 - sparse_categorical_accuracy: 0.4608


256/Unknown  66s 235ms/step - loss: 1.4429 - sparse_categorical_accuracy: 0.4612


257/Unknown  66s 235ms/step - loss: 1.4416 - sparse_categorical_accuracy: 0.4617


258/Unknown  66s 235ms/step - loss: 1.4403 - sparse_categorical_accuracy: 0.4622


259/Unknown  66s 235ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4626


260/Unknown  67s 235ms/step - loss: 1.4377 - sparse_categorical_accuracy: 0.4631


261/Unknown  67s 235ms/step - loss: 1.4364 - sparse_categorical_accuracy: 0.4636


262/Unknown  67s 235ms/step - loss: 1.4352 - sparse_categorical_accuracy: 0.4640


263/Unknown  67s 235ms/step - loss: 1.4339 - sparse_categorical_accuracy: 0.4645


264/Unknown  68s 235ms/step - loss: 1.4326 - sparse_categorical_accuracy: 0.4649


265/Unknown  68s 235ms/step - loss: 1.4314 - sparse_categorical_accuracy: 0.4654


266/Unknown  68s 235ms/step - loss: 1.4301 - sparse_categorical_accuracy: 0.4658


267/Unknown  68s 235ms/step - loss: 1.4289 - sparse_categorical_accuracy: 0.4663


268/Unknown  69s 235ms/step - loss: 1.4276 - sparse_categorical_accuracy: 0.4667


269/Unknown  69s 236ms/step - loss: 1.4264 - sparse_categorical_accuracy: 0.4672


270/Unknown  69s 236ms/step - loss: 1.4251 - sparse_categorical_accuracy: 0.4676


271/Unknown  70s 236ms/step - loss: 1.4239 - sparse_categorical_accuracy: 0.4680


272/Unknown  70s 237ms/step - loss: 1.4227 - sparse_categorical_accuracy: 0.4685


273/Unknown  70s 237ms/step - loss: 1.4215 - sparse_categorical_accuracy: 0.4689


274/Unknown  70s 237ms/step - loss: 1.4202 - sparse_categorical_accuracy: 0.4694


275/Unknown  71s 237ms/step - loss: 1.4190 - sparse_categorical_accuracy: 0.4698


276/Unknown  71s 237ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702


277/Unknown  71s 237ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4706


278/Unknown  71s 237ms/step - loss: 1.4154 - sparse_categorical_accuracy: 0.4711


279/Unknown  72s 237ms/step - loss: 1.4142 - sparse_categorical_accuracy: 0.4715


280/Unknown  72s 237ms/step - loss: 1.4131 - sparse_categorical_accuracy: 0.4719


281/Unknown  72s 237ms/step - loss: 1.4119 - sparse_categorical_accuracy: 0.4723


282/Unknown  72s 237ms/step - loss: 1.4107 - sparse_categorical_accuracy: 0.4728


283/Unknown  73s 237ms/step - loss: 1.4095 - sparse_categorical_accuracy: 0.4732


284/Unknown  73s 237ms/step - loss: 1.4084 - sparse_categorical_accuracy: 0.4736


285/Unknown  73s 237ms/step - loss: 1.4072 - sparse_categorical_accuracy: 0.4740


286/Unknown  73s 237ms/step - loss: 1.4061 - sparse_categorical_accuracy: 0.4744


287/Unknown  74s 237ms/step - loss: 1.4049 - sparse_categorical_accuracy: 0.4748


288/Unknown  74s 237ms/step - loss: 1.4038 - sparse_categorical_accuracy: 0.4752


289/Unknown  74s 238ms/step - loss: 1.4026 - sparse_categorical_accuracy: 0.4756


290/Unknown  74s 238ms/step - loss: 1.4015 - sparse_categorical_accuracy: 0.4760


291/Unknown  75s 238ms/step - loss: 1.4003 - sparse_categorical_accuracy: 0.4764


292/Unknown  75s 238ms/step - loss: 1.3992 - sparse_categorical_accuracy: 0.4768


293/Unknown  75s 238ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4772


294/Unknown  75s 238ms/step - loss: 1.3970 - sparse_categorical_accuracy: 0.4776


295/Unknown  76s 238ms/step - loss: 1.3959 - sparse_categorical_accuracy: 0.4780


296/Unknown  76s 238ms/step - loss: 1.3947 - sparse_categorical_accuracy: 0.4784


297/Unknown  76s 238ms/step - loss: 1.3936 - sparse_categorical_accuracy: 0.4788


298/Unknown  77s 238ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4792


299/Unknown  77s 238ms/step - loss: 1.3914 - sparse_categorical_accuracy: 0.4796


300/Unknown  77s 238ms/step - loss: 1.3904 - sparse_categorical_accuracy: 0.4800


301/Unknown  77s 238ms/step - loss: 1.3893 - sparse_categorical_accuracy: 0.4803


302/Unknown  78s 238ms/step - loss: 1.3882 - sparse_categorical_accuracy: 0.4807


303/Unknown  78s 238ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4811


304/Unknown  78s 238ms/step - loss: 1.3860 - sparse_categorical_accuracy: 0.4815


305/Unknown  78s 238ms/step - loss: 1.3850 - sparse_categorical_accuracy: 0.4819


306/Unknown  79s 239ms/step - loss: 1.3839 - sparse_categorical_accuracy: 0.4822


307/Unknown  79s 239ms/step - loss: 1.3828 - sparse_categorical_accuracy: 0.4826


308/Unknown  79s 239ms/step - loss: 1.3818 - sparse_categorical_accuracy: 0.4830


309/Unknown  79s 239ms/step - loss: 1.3807 - sparse_categorical_accuracy: 0.4833


310/Unknown  79s 238ms/step - loss: 1.3797 - sparse_categorical_accuracy: 0.4837


311/Unknown  80s 238ms/step - loss: 1.3786 - sparse_categorical_accuracy: 0.4841


312/Unknown  80s 239ms/step - loss: 1.3776 - sparse_categorical_accuracy: 0.4844


313/Unknown  80s 239ms/step - loss: 1.3766 - sparse_categorical_accuracy: 0.4848


314/Unknown  80s 239ms/step - loss: 1.3755 - sparse_categorical_accuracy: 0.4852


315/Unknown  81s 239ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4855


316/Unknown  81s 239ms/step - loss: 1.3735 - sparse_categorical_accuracy: 0.4859


317/Unknown  81s 239ms/step - loss: 1.3725 - sparse_categorical_accuracy: 0.4862


318/Unknown  81s 239ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4866


319/Unknown  82s 239ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4869


320/Unknown  82s 239ms/step - loss: 1.3694 - sparse_categorical_accuracy: 0.4873


321/Unknown  82s 239ms/step - loss: 1.3684 - sparse_categorical_accuracy: 0.4876


322/Unknown  82s 239ms/step - loss: 1.3674 - sparse_categorical_accuracy: 0.4880


323/Unknown  83s 239ms/step - loss: 1.3664 - sparse_categorical_accuracy: 0.4883


324/Unknown  83s 239ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4887


325/Unknown  83s 239ms/step - loss: 1.3645 - sparse_categorical_accuracy: 0.4890


326/Unknown  83s 239ms/step - loss: 1.3635 - sparse_categorical_accuracy: 0.4894


327/Unknown  84s 239ms/step - loss: 1.3625 - sparse_categorical_accuracy: 0.4897


328/Unknown  84s 239ms/step - loss: 1.3615 - sparse_categorical_accuracy: 0.4901


329/Unknown  84s 239ms/step - loss: 1.3606 - sparse_categorical_accuracy: 0.4904


330/Unknown  85s 239ms/step - loss: 1.3596 - sparse_categorical_accuracy: 0.4907


331/Unknown  85s 240ms/step - loss: 1.3586 - sparse_categorical_accuracy: 0.4911


332/Unknown  85s 240ms/step - loss: 1.3577 - sparse_categorical_accuracy: 0.4914


333/Unknown  85s 240ms/step - loss: 1.3567 - sparse_categorical_accuracy: 0.4917


334/Unknown  86s 240ms/step - loss: 1.3558 - sparse_categorical_accuracy: 0.4921


335/Unknown  86s 240ms/step - loss: 1.3548 - sparse_categorical_accuracy: 0.4924


336/Unknown  86s 240ms/step - loss: 1.3539 - sparse_categorical_accuracy: 0.4927


337/Unknown  86s 240ms/step - loss: 1.3529 - sparse_categorical_accuracy: 0.4931


338/Unknown  87s 240ms/step - loss: 1.3520 - sparse_categorical_accuracy: 0.4934


339/Unknown  87s 240ms/step - loss: 1.3510 - sparse_categorical_accuracy: 0.4937


340/Unknown  87s 240ms/step - loss: 1.3501 - sparse_categorical_accuracy: 0.4940


341/Unknown  87s 240ms/step - loss: 1.3492 - sparse_categorical_accuracy: 0.4944


342/Unknown  88s 240ms/step - loss: 1.3483 - sparse_categorical_accuracy: 0.4947


343/Unknown  88s 240ms/step - loss: 1.3473 - sparse_categorical_accuracy: 0.4950


344/Unknown  88s 240ms/step - loss: 1.3464 - sparse_categorical_accuracy: 0.4953


345/Unknown  89s 240ms/step - loss: 1.3455 - sparse_categorical_accuracy: 0.4956


346/Unknown  89s 241ms/step - loss: 1.3446 - sparse_categorical_accuracy: 0.4959


347/Unknown  89s 241ms/step - loss: 1.3437 - sparse_categorical_accuracy: 0.4963


348/Unknown  89s 241ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4966


349/Unknown  90s 241ms/step - loss: 1.3419 - sparse_categorical_accuracy: 0.4969


350/Unknown  90s 241ms/step - loss: 1.3410 - sparse_categorical_accuracy: 0.4972


351/Unknown  90s 241ms/step - loss: 1.3401 - sparse_categorical_accuracy: 0.4975


352/Unknown  90s 241ms/step - loss: 1.3392 - sparse_categorical_accuracy: 0.4978


353/Unknown  91s 241ms/step - loss: 1.3383 - sparse_categorical_accuracy: 0.4981


354/Unknown  91s 241ms/step - loss: 1.3374 - sparse_categorical_accuracy: 0.4984


355/Unknown  91s 241ms/step - loss: 1.3365 - sparse_categorical_accuracy: 0.4987


356/Unknown  92s 242ms/step - loss: 1.3356 - sparse_categorical_accuracy: 0.4990


357/Unknown  92s 242ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4994


358/Unknown  92s 242ms/step - loss: 1.3339 - sparse_categorical_accuracy: 0.4997


359/Unknown  92s 242ms/step - loss: 1.3330 - sparse_categorical_accuracy: 0.5000


360/Unknown  93s 242ms/step - loss: 1.3321 - sparse_categorical_accuracy: 0.5003


361/Unknown  93s 242ms/step - loss: 1.3313 - sparse_categorical_accuracy: 0.5006


362/Unknown  93s 242ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.5009


363/Unknown  94s 243ms/step - loss: 1.3296 - sparse_categorical_accuracy: 0.5011


364/Unknown  94s 243ms/step - loss: 1.3287 - sparse_categorical_accuracy: 0.5014


365/Unknown  94s 243ms/step - loss: 1.3279 - sparse_categorical_accuracy: 0.5017


366/Unknown  94s 243ms/step - loss: 1.3270 - sparse_categorical_accuracy: 0.5020


367/Unknown  95s 242ms/step - loss: 1.3262 - sparse_categorical_accuracy: 0.5023


368/Unknown  95s 242ms/step - loss: 1.3253 - sparse_categorical_accuracy: 0.5026


369/Unknown  95s 243ms/step - loss: 1.3245 - sparse_categorical_accuracy: 0.5029


370/Unknown  95s 243ms/step - loss: 1.3236 - sparse_categorical_accuracy: 0.5032


371/Unknown  96s 243ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.5035


372/Unknown  96s 243ms/step - loss: 1.3220 - sparse_categorical_accuracy: 0.5038


373/Unknown  96s 243ms/step - loss: 1.3211 - sparse_categorical_accuracy: 0.5041


374/Unknown  96s 243ms/step - loss: 1.3203 - sparse_categorical_accuracy: 0.5043


375/Unknown  97s 243ms/step - loss: 1.3195 - sparse_categorical_accuracy: 0.5046


376/Unknown  97s 243ms/step - loss: 1.3187 - sparse_categorical_accuracy: 0.5049


377/Unknown  97s 243ms/step - loss: 1.3179 - sparse_categorical_accuracy: 0.5052


378/Unknown  97s 243ms/step - loss: 1.3170 - sparse_categorical_accuracy: 0.5055


379/Unknown  98s 243ms/step - loss: 1.3162 - sparse_categorical_accuracy: 0.5057


380/Unknown  98s 243ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5060


381/Unknown  98s 243ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5063


382/Unknown  98s 243ms/step - loss: 1.3138 - sparse_categorical_accuracy: 0.5066


383/Unknown  99s 243ms/step - loss: 1.3130 - sparse_categorical_accuracy: 0.5068


384/Unknown  99s 243ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5071


385/Unknown  99s 243ms/step - loss: 1.3114 - sparse_categorical_accuracy: 0.5074


386/Unknown  99s 243ms/step - loss: 1.3106 - sparse_categorical_accuracy: 0.5077


387/Unknown  100s 243ms/step - loss: 1.3098 - sparse_categorical_accuracy: 0.5079


388/Unknown  100s 243ms/step - loss: 1.3091 - sparse_categorical_accuracy: 0.5082


389/Unknown  100s 243ms/step - loss: 1.3083 - sparse_categorical_accuracy: 0.5085


390/Unknown  101s 243ms/step - loss: 1.3075 - sparse_categorical_accuracy: 0.5087


391/Unknown  101s 244ms/step - loss: 1.3067 - sparse_categorical_accuracy: 0.5090


392/Unknown  101s 244ms/step - loss: 1.3059 - sparse_categorical_accuracy: 0.5093


393/Unknown  101s 244ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5095


394/Unknown  102s 244ms/step - loss: 1.3044 - sparse_categorical_accuracy: 0.5098


395/Unknown  102s 244ms/step - loss: 1.3036 - sparse_categorical_accuracy: 0.5101


396/Unknown  102s 244ms/step - loss: 1.3029 - sparse_categorical_accuracy: 0.5103


397/Unknown  102s 244ms/step - loss: 1.3021 - sparse_categorical_accuracy: 0.5106


398/Unknown  103s 244ms/step - loss: 1.3013 - sparse_categorical_accuracy: 0.5108


399/Unknown  103s 244ms/step - loss: 1.3006 - sparse_categorical_accuracy: 0.5111


400/Unknown  103s 244ms/step - loss: 1.2998 - sparse_categorical_accuracy: 0.5114


401/Unknown  103s 244ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5116


402/Unknown  104s 244ms/step - loss: 1.2983 - sparse_categorical_accuracy: 0.5119


403/Unknown  104s 244ms/step - loss: 1.2976 - sparse_categorical_accuracy: 0.5121


404/Unknown  104s 244ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5124


405/Unknown  104s 244ms/step - loss: 1.2961 - sparse_categorical_accuracy: 0.5126


406/Unknown  105s 244ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5129


407/Unknown  105s 244ms/step - loss: 1.2946 - sparse_categorical_accuracy: 0.5131


408/Unknown  105s 244ms/step - loss: 1.2939 - sparse_categorical_accuracy: 0.5134


409/Unknown  105s 244ms/step - loss: 1.2931 - sparse_categorical_accuracy: 0.5136


410/Unknown  106s 244ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5139


411/Unknown  106s 244ms/step - loss: 1.2917 - sparse_categorical_accuracy: 0.5141


412/Unknown  106s 244ms/step - loss: 1.2909 - sparse_categorical_accuracy: 0.5144


413/Unknown  106s 244ms/step - loss: 1.2902 - sparse_categorical_accuracy: 0.5146


414/Unknown  107s 244ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5149


415/Unknown  107s 244ms/step - loss: 1.2888 - sparse_categorical_accuracy: 0.5151


416/Unknown  107s 244ms/step - loss: 1.2880 - sparse_categorical_accuracy: 0.5154


417/Unknown  107s 244ms/step - loss: 1.2873 - sparse_categorical_accuracy: 0.5156


418/Unknown  108s 244ms/step - loss: 1.2866 - sparse_categorical_accuracy: 0.5159


419/Unknown  108s 244ms/step - loss: 1.2859 - sparse_categorical_accuracy: 0.5161


420/Unknown  108s 244ms/step - loss: 1.2852 - sparse_categorical_accuracy: 0.5163


421/Unknown  108s 244ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5166


422/Unknown  109s 244ms/step - loss: 1.2838 - sparse_categorical_accuracy: 0.5168


423/Unknown  109s 244ms/step - loss: 1.2831 - sparse_categorical_accuracy: 0.5171


424/Unknown  109s 244ms/step - loss: 1.2824 - sparse_categorical_accuracy: 0.5173


425/Unknown  109s 244ms/step - loss: 1.2817 - sparse_categorical_accuracy: 0.5175


426/Unknown  110s 245ms/step - loss: 1.2810 - sparse_categorical_accuracy: 0.5178


427/Unknown  110s 245ms/step - loss: 1.2803 - sparse_categorical_accuracy: 0.5180


428/Unknown  110s 245ms/step - loss: 1.2796 - sparse_categorical_accuracy: 0.5182


429/Unknown  110s 245ms/step - loss: 1.2789 - sparse_categorical_accuracy: 0.5185


430/Unknown  111s 245ms/step - loss: 1.2782 - sparse_categorical_accuracy: 0.5187


431/Unknown  111s 245ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5189


432/Unknown  111s 245ms/step - loss: 1.2768 - sparse_categorical_accuracy: 0.5192


433/Unknown  112s 245ms/step - loss: 1.2762 - sparse_categorical_accuracy: 0.5194


434/Unknown  112s 245ms/step - loss: 1.2755 - sparse_categorical_accuracy: 0.5196


435/Unknown  112s 245ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5199


436/Unknown  113s 245ms/step - loss: 1.2741 - sparse_categorical_accuracy: 0.5201


437/Unknown  113s 246ms/step - loss: 1.2735 - sparse_categorical_accuracy: 0.5203


438/Unknown  113s 246ms/step - loss: 1.2728 - sparse_categorical_accuracy: 0.5206


439/Unknown  113s 246ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5208


440/Unknown  114s 246ms/step - loss: 1.2714 - sparse_categorical_accuracy: 0.5210


441/Unknown  114s 246ms/step - loss: 1.2708 - sparse_categorical_accuracy: 0.5212


442/Unknown  114s 246ms/step - loss: 1.2701 - sparse_categorical_accuracy: 0.5215


443/Unknown  115s 246ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5217


444/Unknown  115s 246ms/step - loss: 1.2688 - sparse_categorical_accuracy: 0.5219


445/Unknown  115s 246ms/step - loss: 1.2681 - sparse_categorical_accuracy: 0.5221


446/Unknown  115s 246ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5224


447/Unknown  116s 247ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5226


448/Unknown  116s 247ms/step - loss: 1.2662 - sparse_categorical_accuracy: 0.5228


449/Unknown  116s 247ms/step - loss: 1.2655 - sparse_categorical_accuracy: 0.5230


450/Unknown  117s 247ms/step - loss: 1.2649 - sparse_categorical_accuracy: 0.5232


451/Unknown  117s 247ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5235


452/Unknown  117s 247ms/step - loss: 1.2636 - sparse_categorical_accuracy: 0.5237


453/Unknown  117s 247ms/step - loss: 1.2630 - sparse_categorical_accuracy: 0.5239


454/Unknown  118s 247ms/step - loss: 1.2623 - sparse_categorical_accuracy: 0.5241


455/Unknown  118s 247ms/step - loss: 1.2617 - sparse_categorical_accuracy: 0.5243


456/Unknown  118s 247ms/step - loss: 1.2610 - sparse_categorical_accuracy: 0.5245


457/Unknown  118s 247ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5248


458/Unknown  119s 247ms/step - loss: 1.2598 - sparse_categorical_accuracy: 0.5250


459/Unknown  119s 247ms/step - loss: 1.2591 - sparse_categorical_accuracy: 0.5252


460/Unknown  119s 247ms/step - loss: 1.2585 - sparse_categorical_accuracy: 0.5254


461/Unknown  119s 247ms/step - loss: 1.2579 - sparse_categorical_accuracy: 0.5256


462/Unknown  120s 247ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5258


463/Unknown  120s 247ms/step - loss: 1.2566 - sparse_categorical_accuracy: 0.5260


464/Unknown  120s 247ms/step - loss: 1.2560 - sparse_categorical_accuracy: 0.5262


465/Unknown  121s 247ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5264


466/Unknown  121s 247ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5267


467/Unknown  121s 247ms/step - loss: 1.2541 - sparse_categorical_accuracy: 0.5269


468/Unknown  121s 247ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5271


469/Unknown  122s 247ms/step - loss: 1.2529 - sparse_categorical_accuracy: 0.5273


470/Unknown  122s 248ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5275


471/Unknown  122s 248ms/step - loss: 1.2517 - sparse_categorical_accuracy: 0.5277


472/Unknown  123s 248ms/step - loss: 1.2511 - sparse_categorical_accuracy: 0.5279


473/Unknown  123s 248ms/step - loss: 1.2505 - sparse_categorical_accuracy: 0.5281


474/Unknown  123s 248ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5283


475/Unknown  124s 249ms/step - loss: 1.2493 - sparse_categorical_accuracy: 0.5285


476/Unknown  124s 249ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5287


477/Unknown  124s 249ms/step - loss: 1.2481 - sparse_categorical_accuracy: 0.5289


478/Unknown  124s 249ms/step - loss: 1.2475 - sparse_categorical_accuracy: 0.5291


479/Unknown  125s 249ms/step - loss: 1.2469 - sparse_categorical_accuracy: 0.5293


480/Unknown  125s 249ms/step - loss: 1.2463 - sparse_categorical_accuracy: 0.5295


481/Unknown  125s 249ms/step - loss: 1.2457 - sparse_categorical_accuracy: 0.5297


482/Unknown  125s 248ms/step - loss: 1.2451 - sparse_categorical_accuracy: 0.5299


483/Unknown  126s 248ms/step - loss: 1.2445 - sparse_categorical_accuracy: 0.5301


484/Unknown  126s 249ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5303


485/Unknown  126s 249ms/step - loss: 1.2433 - sparse_categorical_accuracy: 0.5305


486/Unknown  126s 249ms/step - loss: 1.2427 - sparse_categorical_accuracy: 0.5307


487/Unknown  127s 249ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5309


488/Unknown  127s 249ms/step - loss: 1.2416 - sparse_categorical_accuracy: 0.5311


489/Unknown  127s 249ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5313


490/Unknown  127s 249ms/step - loss: 1.2404 - sparse_categorical_accuracy: 0.5315


491/Unknown  128s 249ms/step - loss: 1.2398 - sparse_categorical_accuracy: 0.5317


492/Unknown  128s 249ms/step - loss: 1.2392 - sparse_categorical_accuracy: 0.5319


493/Unknown  128s 249ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5321


494/Unknown  129s 249ms/step - loss: 1.2381 - sparse_categorical_accuracy: 0.5323


495/Unknown  129s 249ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5325


496/Unknown  129s 249ms/step - loss: 1.2369 - sparse_categorical_accuracy: 0.5326


497/Unknown  129s 249ms/step - loss: 1.2364 - sparse_categorical_accuracy: 0.5328


498/Unknown  130s 249ms/step - loss: 1.2358 - sparse_categorical_accuracy: 0.5330


499/Unknown  130s 249ms/step - loss: 1.2352 - sparse_categorical_accuracy: 0.5332


500/Unknown  130s 249ms/step - loss: 1.2347 - sparse_categorical_accuracy: 0.5334


501/Unknown  130s 249ms/step - loss: 1.2341 - sparse_categorical_accuracy: 0.5336


502/Unknown  131s 249ms/step - loss: 1.2336 - sparse_categorical_accuracy: 0.5338


503/Unknown  131s 249ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5340


504/Unknown  131s 249ms/step - loss: 1.2324 - sparse_categorical_accuracy: 0.5342


505/Unknown  131s 249ms/step - loss: 1.2319 - sparse_categorical_accuracy: 0.5343


506/Unknown  132s 249ms/step - loss: 1.2313 - sparse_categorical_accuracy: 0.5345


507/Unknown  132s 250ms/step - loss: 1.2308 - sparse_categorical_accuracy: 0.5347


508/Unknown  133s 250ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5349


509/Unknown  133s 250ms/step - loss: 1.2297 - sparse_categorical_accuracy: 0.5351


510/Unknown  133s 250ms/step - loss: 1.2291 - sparse_categorical_accuracy: 0.5353


511/Unknown  133s 250ms/step - loss: 1.2286 - sparse_categorical_accuracy: 0.5355


512/Unknown  134s 250ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5356


513/Unknown  134s 250ms/step - loss: 1.2275 - sparse_categorical_accuracy: 0.5358


514/Unknown  134s 250ms/step - loss: 1.2269 - sparse_categorical_accuracy: 0.5360


515/Unknown  134s 250ms/step - loss: 1.2264 - sparse_categorical_accuracy: 0.5362


516/Unknown  135s 250ms/step - loss: 1.2258 - sparse_categorical_accuracy: 0.5364


517/Unknown  135s 250ms/step - loss: 1.2253 - sparse_categorical_accuracy: 0.5366


518/Unknown  135s 250ms/step - loss: 1.2248 - sparse_categorical_accuracy: 0.5367


519/Unknown  136s 251ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5369


520/Unknown  136s 251ms/step - loss: 1.2237 - sparse_categorical_accuracy: 0.5371


521/Unknown  136s 251ms/step - loss: 1.2231 - sparse_categorical_accuracy: 0.5373


522/Unknown  136s 251ms/step - loss: 1.2226 - sparse_categorical_accuracy: 0.5375


523/Unknown  137s 251ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5376


524/Unknown  137s 251ms/step - loss: 1.2215 - sparse_categorical_accuracy: 0.5378


525/Unknown  137s 251ms/step - loss: 1.2210 - sparse_categorical_accuracy: 0.5380


526/Unknown  137s 251ms/step - loss: 1.2205 - sparse_categorical_accuracy: 0.5382


527/Unknown  138s 251ms/step - loss: 1.2200 - sparse_categorical_accuracy: 0.5383


528/Unknown  138s 251ms/step - loss: 1.2194 - sparse_categorical_accuracy: 0.5385


529/Unknown  138s 251ms/step - loss: 1.2189 - sparse_categorical_accuracy: 0.5387


530/Unknown  138s 251ms/step - loss: 1.2184 - sparse_categorical_accuracy: 0.5389


531/Unknown  139s 251ms/step - loss: 1.2179 - sparse_categorical_accuracy: 0.5390


532/Unknown  139s 251ms/step - loss: 1.2173 - sparse_categorical_accuracy: 0.5392


533/Unknown  139s 251ms/step - loss: 1.2168 - sparse_categorical_accuracy: 0.5394


534/Unknown  140s 251ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5396


535/Unknown  140s 251ms/step - loss: 1.2158 - sparse_categorical_accuracy: 0.5397


536/Unknown  140s 251ms/step - loss: 1.2153 - sparse_categorical_accuracy: 0.5399


537/Unknown  140s 251ms/step - loss: 1.2148 - sparse_categorical_accuracy: 0.5401


538/Unknown  141s 251ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5402


539/Unknown  141s 251ms/step - loss: 1.2137 - sparse_categorical_accuracy: 0.5404


540/Unknown  141s 251ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5406


541/Unknown  141s 251ms/step - loss: 1.2127 - sparse_categorical_accuracy: 0.5408


542/Unknown  142s 251ms/step - loss: 1.2122 - sparse_categorical_accuracy: 0.5409


543/Unknown  142s 251ms/step - loss: 1.2117 - sparse_categorical_accuracy: 0.5411


544/Unknown  142s 251ms/step - loss: 1.2112 - sparse_categorical_accuracy: 0.5413


545/Unknown  143s 252ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5414


546/Unknown  143s 252ms/step - loss: 1.2102 - sparse_categorical_accuracy: 0.5416


547/Unknown  143s 252ms/step - loss: 1.2097 - sparse_categorical_accuracy: 0.5418


548/Unknown  144s 252ms/step - loss: 1.2092 - sparse_categorical_accuracy: 0.5419


549/Unknown  144s 252ms/step - loss: 1.2087 - sparse_categorical_accuracy: 0.5421


550/Unknown  144s 252ms/step - loss: 1.2082 - sparse_categorical_accuracy: 0.5423


551/Unknown  144s 252ms/step - loss: 1.2077 - sparse_categorical_accuracy: 0.5424


552/Unknown  145s 252ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5426


553/Unknown  145s 252ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5428


554/Unknown  145s 252ms/step - loss: 1.2062 - sparse_categorical_accuracy: 0.5429


555/Unknown  146s 252ms/step - loss: 1.2057 - sparse_categorical_accuracy: 0.5431


556/Unknown  146s 252ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5433


557/Unknown  146s 252ms/step - loss: 1.2047 - sparse_categorical_accuracy: 0.5434


558/Unknown  146s 253ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5436


559/Unknown  147s 253ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5437


560/Unknown  147s 253ms/step - loss: 1.2033 - sparse_categorical_accuracy: 0.5439


561/Unknown  147s 253ms/step - loss: 1.2028 - sparse_categorical_accuracy: 0.5441


562/Unknown  148s 253ms/step - loss: 1.2023 - sparse_categorical_accuracy: 0.5442


563/Unknown  148s 253ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5444


564/Unknown  148s 253ms/step - loss: 1.2013 - sparse_categorical_accuracy: 0.5445


565/Unknown  148s 253ms/step - loss: 1.2009 - sparse_categorical_accuracy: 0.5447


566/Unknown  149s 253ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5449


567/Unknown  149s 253ms/step - loss: 1.1999 - sparse_categorical_accuracy: 0.5450


568/Unknown  149s 253ms/step - loss: 1.1994 - sparse_categorical_accuracy: 0.5452


569/Unknown  149s 253ms/step - loss: 1.1990 - sparse_categorical_accuracy: 0.5453


570/Unknown  150s 253ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5455


571/Unknown  150s 253ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5456


572/Unknown  150s 253ms/step - loss: 1.1975 - sparse_categorical_accuracy: 0.5458


573/Unknown  150s 253ms/step - loss: 1.1971 - sparse_categorical_accuracy: 0.5460


574/Unknown  150s 252ms/step - loss: 1.1966 - sparse_categorical_accuracy: 0.5461


575/Unknown  151s 252ms/step - loss: 1.1961 - sparse_categorical_accuracy: 0.5463


576/Unknown  151s 252ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5464


577/Unknown  151s 252ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5466


578/Unknown  151s 252ms/step - loss: 1.1947 - sparse_categorical_accuracy: 0.5467


579/Unknown  152s 252ms/step - loss: 1.1943 - sparse_categorical_accuracy: 0.5469


580/Unknown  152s 252ms/step - loss: 1.1938 - sparse_categorical_accuracy: 0.5470


581/Unknown  152s 252ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5472


582/Unknown  152s 252ms/step - loss: 1.1929 - sparse_categorical_accuracy: 0.5473


583/Unknown  153s 252ms/step - loss: 1.1924 - sparse_categorical_accuracy: 0.5475


584/Unknown  153s 252ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5476


585/Unknown  153s 252ms/step - loss: 1.1915 - sparse_categorical_accuracy: 0.5478


586/Unknown  153s 252ms/step - loss: 1.1911 - sparse_categorical_accuracy: 0.5479


587/Unknown  153s 252ms/step - loss: 1.1906 - sparse_categorical_accuracy: 0.5481


588/Unknown  154s 252ms/step - loss: 1.1901 - sparse_categorical_accuracy: 0.5482


589/Unknown  154s 252ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5484


590/Unknown  154s 252ms/step - loss: 1.1892 - sparse_categorical_accuracy: 0.5485


591/Unknown  155s 252ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5487


592/Unknown  155s 252ms/step - loss: 1.1883 - sparse_categorical_accuracy: 0.5488


593/Unknown  155s 252ms/step - loss: 1.1879 - sparse_categorical_accuracy: 0.5490


594/Unknown  155s 252ms/step - loss: 1.1874 - sparse_categorical_accuracy: 0.5491


595/Unknown  156s 252ms/step - loss: 1.1870 - sparse_categorical_accuracy: 0.5493


596/Unknown  156s 252ms/step - loss: 1.1865 - sparse_categorical_accuracy: 0.5494


597/Unknown  156s 252ms/step - loss: 1.1861 - sparse_categorical_accuracy: 0.5496


598/Unknown  156s 252ms/step - loss: 1.1857 - sparse_categorical_accuracy: 0.5497


599/Unknown  157s 252ms/step - loss: 1.1852 - sparse_categorical_accuracy: 0.5499


600/Unknown  157s 252ms/step - loss: 1.1848 - sparse_categorical_accuracy: 0.5500


601/Unknown  157s 252ms/step - loss: 1.1843 - sparse_categorical_accuracy: 0.5502


602/Unknown  157s 252ms/step - loss: 1.1839 - sparse_categorical_accuracy: 0.5503


603/Unknown  158s 252ms/step - loss: 1.1834 - sparse_categorical_accuracy: 0.5505


604/Unknown  158s 252ms/step - loss: 1.1830 - sparse_categorical_accuracy: 0.5506


605/Unknown  158s 252ms/step - loss: 1.1826 - sparse_categorical_accuracy: 0.5508


606/Unknown  158s 252ms/step - loss: 1.1821 - sparse_categorical_accuracy: 0.5509


607/Unknown  159s 252ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5510


608/Unknown  159s 252ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5512


609/Unknown  159s 252ms/step - loss: 1.1808 - sparse_categorical_accuracy: 0.5513


610/Unknown  159s 252ms/step - loss: 1.1804 - sparse_categorical_accuracy: 0.5515


611/Unknown  160s 252ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5516


612/Unknown  160s 252ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5518


613/Unknown  160s 252ms/step - loss: 1.1791 - sparse_categorical_accuracy: 0.5519


614/Unknown  160s 252ms/step - loss: 1.1787 - sparse_categorical_accuracy: 0.5520


615/Unknown  161s 252ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5522


616/Unknown  161s 252ms/step - loss: 1.1778 - sparse_categorical_accuracy: 0.5523


617/Unknown  161s 252ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5525


618/Unknown  161s 252ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5526


619/Unknown  162s 252ms/step - loss: 1.1765 - sparse_categorical_accuracy: 0.5527


620/Unknown  162s 252ms/step - loss: 1.1761 - sparse_categorical_accuracy: 0.5529


621/Unknown  162s 252ms/step - loss: 1.1757 - sparse_categorical_accuracy: 0.5530


622/Unknown  163s 252ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5532


623/Unknown  163s 252ms/step - loss: 1.1749 - sparse_categorical_accuracy: 0.5533


624/Unknown  163s 252ms/step - loss: 1.1744 - sparse_categorical_accuracy: 0.5534


625/Unknown  163s 252ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5536


626/Unknown  164s 252ms/step - loss: 1.1736 - sparse_categorical_accuracy: 0.5537


627/Unknown  164s 252ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5538


628/Unknown  164s 253ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5540


629/Unknown  164s 253ms/step - loss: 1.1724 - sparse_categorical_accuracy: 0.5541


630/Unknown  165s 253ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5543


631/Unknown  165s 253ms/step - loss: 1.1715 - sparse_categorical_accuracy: 0.5544


632/Unknown  165s 253ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5545


633/Unknown  166s 253ms/step - loss: 1.1707 - sparse_categorical_accuracy: 0.5547


634/Unknown  166s 253ms/step - loss: 1.1703 - sparse_categorical_accuracy: 0.5548


635/Unknown  166s 253ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5549


636/Unknown  167s 253ms/step - loss: 1.1695 - sparse_categorical_accuracy: 0.5551


637/Unknown  167s 253ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5552


638/Unknown  167s 253ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5553


639/Unknown  167s 253ms/step - loss: 1.1683 - sparse_categorical_accuracy: 0.5555


640/Unknown  168s 253ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5556


641/Unknown  168s 253ms/step - loss: 1.1674 - sparse_categorical_accuracy: 0.5557


642/Unknown  168s 253ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5559


643/Unknown  169s 253ms/step - loss: 1.1666 - sparse_categorical_accuracy: 0.5560


644/Unknown  169s 253ms/step - loss: 1.1662 - sparse_categorical_accuracy: 0.5561


645/Unknown  169s 253ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5563


646/Unknown  169s 253ms/step - loss: 1.1654 - sparse_categorical_accuracy: 0.5564


647/Unknown  170s 253ms/step - loss: 1.1650 - sparse_categorical_accuracy: 0.5565


648/Unknown  170s 253ms/step - loss: 1.1646 - sparse_categorical_accuracy: 0.5567


649/Unknown  170s 253ms/step - loss: 1.1642 - sparse_categorical_accuracy: 0.5568


650/Unknown  170s 253ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5569


651/Unknown  171s 254ms/step - loss: 1.1634 - sparse_categorical_accuracy: 0.5570


652/Unknown  171s 254ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5572


653/Unknown  171s 254ms/step - loss: 1.1627 - sparse_categorical_accuracy: 0.5573


654/Unknown  171s 254ms/step - loss: 1.1623 - sparse_categorical_accuracy: 0.5574


655/Unknown  172s 254ms/step - loss: 1.1619 - sparse_categorical_accuracy: 0.5576


656/Unknown  172s 254ms/step - loss: 1.1615 - sparse_categorical_accuracy: 0.5577


657/Unknown  172s 254ms/step - loss: 1.1611 - sparse_categorical_accuracy: 0.5578


658/Unknown  173s 254ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5579


659/Unknown  173s 254ms/step - loss: 1.1603 - sparse_categorical_accuracy: 0.5581


660/Unknown  173s 254ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5582


661/Unknown  173s 254ms/step - loss: 1.1595 - sparse_categorical_accuracy: 0.5583


662/Unknown  174s 254ms/step - loss: 1.1591 - sparse_categorical_accuracy: 0.5584


663/Unknown  174s 254ms/step - loss: 1.1588 - sparse_categorical_accuracy: 0.5586


664/Unknown  174s 254ms/step - loss: 1.1584 - sparse_categorical_accuracy: 0.5587


665/Unknown  175s 254ms/step - loss: 1.1580 - sparse_categorical_accuracy: 0.5588


666/Unknown  175s 254ms/step - loss: 1.1576 - sparse_categorical_accuracy: 0.5590


667/Unknown  175s 255ms/step - loss: 1.1572 - sparse_categorical_accuracy: 0.5591


668/Unknown  176s 255ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5592


669/Unknown  176s 255ms/step - loss: 1.1565 - sparse_categorical_accuracy: 0.5593


670/Unknown  176s 255ms/step - loss: 1.1561 - sparse_categorical_accuracy: 0.5595


671/Unknown  177s 255ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5596


672/Unknown  177s 255ms/step - loss: 1.1553 - sparse_categorical_accuracy: 0.5597


673/Unknown  177s 255ms/step - loss: 1.1549 - sparse_categorical_accuracy: 0.5598


674/Unknown  177s 255ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5600


675/Unknown  178s 255ms/step - loss: 1.1542 - sparse_categorical_accuracy: 0.5601


676/Unknown  178s 255ms/step - loss: 1.1538 - sparse_categorical_accuracy: 0.5602


677/Unknown  178s 255ms/step - loss: 1.1534 - sparse_categorical_accuracy: 0.5603


678/Unknown  178s 255ms/step - loss: 1.1531 - sparse_categorical_accuracy: 0.5604


679/Unknown  179s 255ms/step - loss: 1.1527 - sparse_categorical_accuracy: 0.5606


680/Unknown  179s 255ms/step - loss: 1.1523 - sparse_categorical_accuracy: 0.5607


681/Unknown  179s 255ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5608


682/Unknown  179s 255ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5609


683/Unknown  180s 255ms/step - loss: 1.1512 - sparse_categorical_accuracy: 0.5611


684/Unknown  180s 255ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5612


685/Unknown  180s 255ms/step - loss: 1.1505 - sparse_categorical_accuracy: 0.5613


686/Unknown  180s 255ms/step - loss: 1.1501 - sparse_categorical_accuracy: 0.5614


687/Unknown  180s 255ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5615


688/Unknown  181s 255ms/step - loss: 1.1494 - sparse_categorical_accuracy: 0.5617


689/Unknown  181s 255ms/step - loss: 1.1490 - sparse_categorical_accuracy: 0.5618


690/Unknown  181s 254ms/step - loss: 1.1486 - sparse_categorical_accuracy: 0.5619


691/Unknown  181s 254ms/step - loss: 1.1483 - sparse_categorical_accuracy: 0.5620


692/Unknown  182s 254ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5621


693/Unknown  182s 254ms/step - loss: 1.1475 - sparse_categorical_accuracy: 0.5623


694/Unknown  182s 254ms/step - loss: 1.1472 - sparse_categorical_accuracy: 0.5624


695/Unknown  182s 254ms/step - loss: 1.1468 - sparse_categorical_accuracy: 0.5625


696/Unknown  183s 254ms/step - loss: 1.1464 - sparse_categorical_accuracy: 0.5626


697/Unknown  183s 254ms/step - loss: 1.1461 - sparse_categorical_accuracy: 0.5627


698/Unknown  183s 254ms/step - loss: 1.1457 - sparse_categorical_accuracy: 0.5628


699/Unknown  183s 255ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5630


700/Unknown  184s 255ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5631


701/Unknown  184s 255ms/step - loss: 1.1447 - sparse_categorical_accuracy: 0.5632


702/Unknown  184s 255ms/step - loss: 1.1443 - sparse_categorical_accuracy: 0.5633


703/Unknown  185s 255ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5634


704/Unknown  185s 255ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5635


705/Unknown  185s 255ms/step - loss: 1.1432 - sparse_categorical_accuracy: 0.5637


706/Unknown  185s 255ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5638


707/Unknown  186s 255ms/step - loss: 1.1425 - sparse_categorical_accuracy: 0.5639


708/Unknown  186s 255ms/step - loss: 1.1422 - sparse_categorical_accuracy: 0.5640


709/Unknown  186s 255ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5641


710/Unknown  187s 255ms/step - loss: 1.1415 - sparse_categorical_accuracy: 0.5642


711/Unknown  187s 255ms/step - loss: 1.1411 - sparse_categorical_accuracy: 0.5644


712/Unknown  187s 255ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5645


713/Unknown  188s 255ms/step - loss: 1.1404 - sparse_categorical_accuracy: 0.5646


714/Unknown  188s 255ms/step - loss: 1.1401 - sparse_categorical_accuracy: 0.5647


715/Unknown  188s 255ms/step - loss: 1.1397 - sparse_categorical_accuracy: 0.5648


716/Unknown  188s 255ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5649


717/Unknown  189s 255ms/step - loss: 1.1390 - sparse_categorical_accuracy: 0.5650


718/Unknown  189s 256ms/step - loss: 1.1387 - sparse_categorical_accuracy: 0.5651


719/Unknown  189s 256ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5653


720/Unknown  190s 256ms/step - loss: 1.1380 - sparse_categorical_accuracy: 0.5654


721/Unknown  190s 256ms/step - loss: 1.1376 - sparse_categorical_accuracy: 0.5655


722/Unknown  190s 256ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5656


723/Unknown  191s 256ms/step - loss: 1.1370 - sparse_categorical_accuracy: 0.5657


724/Unknown  191s 256ms/step - loss: 1.1366 - sparse_categorical_accuracy: 0.5658


725/Unknown  191s 256ms/step - loss: 1.1363 - sparse_categorical_accuracy: 0.5659


726/Unknown  192s 256ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5660


727/Unknown  192s 256ms/step - loss: 1.1356 - sparse_categorical_accuracy: 0.5662


728/Unknown  192s 256ms/step - loss: 1.1353 - sparse_categorical_accuracy: 0.5663


729/Unknown  192s 256ms/step - loss: 1.1349 - sparse_categorical_accuracy: 0.5664


730/Unknown  193s 256ms/step - loss: 1.1346 - sparse_categorical_accuracy: 0.5665


731/Unknown  193s 256ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5666


732/Unknown  193s 256ms/step - loss: 1.1339 - sparse_categorical_accuracy: 0.5667


733/Unknown  193s 256ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5668


734/Unknown  194s 256ms/step - loss: 1.1332 - sparse_categorical_accuracy: 0.5669


735/Unknown  194s 256ms/step - loss: 1.1329 - sparse_categorical_accuracy: 0.5670


736/Unknown  194s 256ms/step - loss: 1.1326 - sparse_categorical_accuracy: 0.5671


737/Unknown  194s 256ms/step - loss: 1.1322 - sparse_categorical_accuracy: 0.5672


738/Unknown  195s 256ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5674


739/Unknown  195s 256ms/step - loss: 1.1316 - sparse_categorical_accuracy: 0.5675


740/Unknown  195s 256ms/step - loss: 1.1312 - sparse_categorical_accuracy: 0.5676


741/Unknown  195s 256ms/step - loss: 1.1309 - sparse_categorical_accuracy: 0.5677


742/Unknown  196s 256ms/step - loss: 1.1306 - sparse_categorical_accuracy: 0.5678


743/Unknown  196s 256ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5679


744/Unknown  196s 256ms/step - loss: 1.1299 - sparse_categorical_accuracy: 0.5680


745/Unknown  196s 256ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5681


746/Unknown  197s 256ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5682


747/Unknown  197s 256ms/step - loss: 1.1289 - sparse_categorical_accuracy: 0.5683


748/Unknown  197s 257ms/step - loss: 1.1286 - sparse_categorical_accuracy: 0.5684


749/Unknown  198s 257ms/step - loss: 1.1283 - sparse_categorical_accuracy: 0.5685


750/Unknown  198s 257ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5686


751/Unknown  198s 257ms/step - loss: 1.1276 - sparse_categorical_accuracy: 0.5687


752/Unknown  199s 257ms/step - loss: 1.1273 - sparse_categorical_accuracy: 0.5689


753/Unknown  199s 257ms/step - loss: 1.1270 - sparse_categorical_accuracy: 0.5690


754/Unknown  199s 257ms/step - loss: 1.1267 - sparse_categorical_accuracy: 0.5691


755/Unknown  200s 257ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5692


756/Unknown  200s 257ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5693


757/Unknown  200s 257ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5694


758/Unknown  201s 257ms/step - loss: 1.1254 - sparse_categorical_accuracy: 0.5695


759/Unknown  201s 257ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5696


760/Unknown  201s 257ms/step - loss: 1.1247 - sparse_categorical_accuracy: 0.5697


761/Unknown  201s 257ms/step - loss: 1.1244 - sparse_categorical_accuracy: 0.5698


762/Unknown  202s 257ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5699


763/Unknown  202s 257ms/step - loss: 1.1238 - sparse_categorical_accuracy: 0.5700


764/Unknown  202s 257ms/step - loss: 1.1235 - sparse_categorical_accuracy: 0.5701


765/Unknown  202s 257ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5702


766/Unknown  203s 257ms/step - loss: 1.1228 - sparse_categorical_accuracy: 0.5703


767/Unknown  203s 257ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5704


768/Unknown  203s 257ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5705


769/Unknown  203s 257ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5706


770/Unknown  204s 257ms/step - loss: 1.1216 - sparse_categorical_accuracy: 0.5707


771/Unknown  204s 257ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5708


772/Unknown  204s 257ms/step - loss: 1.1209 - sparse_categorical_accuracy: 0.5709


773/Unknown  204s 257ms/step - loss: 1.1206 - sparse_categorical_accuracy: 0.5710


774/Unknown  205s 257ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5711


775/Unknown  205s 257ms/step - loss: 1.1200 - sparse_categorical_accuracy: 0.5712


776/Unknown  205s 257ms/step - loss: 1.1197 - sparse_categorical_accuracy: 0.5713


777/Unknown  205s 257ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5714


778/Unknown  206s 257ms/step - loss: 1.1191 - sparse_categorical_accuracy: 0.5715


779/Unknown  206s 257ms/step - loss: 1.1188 - sparse_categorical_accuracy: 0.5716


780/Unknown  206s 257ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5717


781/Unknown  207s 258ms/step - loss: 1.1181 - sparse_categorical_accuracy: 0.5718


782/Unknown  207s 258ms/step - loss: 1.1178 - sparse_categorical_accuracy: 0.5719


783/Unknown  207s 258ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5720


784/Unknown  208s 258ms/step - loss: 1.1172 - sparse_categorical_accuracy: 0.5721


785/Unknown  208s 258ms/step - loss: 1.1169 - sparse_categorical_accuracy: 0.5722


786/Unknown  208s 258ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5723


787/Unknown  209s 258ms/step - loss: 1.1163 - sparse_categorical_accuracy: 0.5724


788/Unknown  209s 258ms/step - loss: 1.1160 - sparse_categorical_accuracy: 0.5725


789/Unknown  209s 258ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5726


790/Unknown  209s 258ms/step - loss: 1.1154 - sparse_categorical_accuracy: 0.5727


791/Unknown  210s 258ms/step - loss: 1.1151 - sparse_categorical_accuracy: 0.5728


792/Unknown  210s 258ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5729


793/Unknown  210s 258ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5730


794/Unknown  210s 258ms/step - loss: 1.1142 - sparse_categorical_accuracy: 0.5731


795/Unknown  211s 258ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5732


796/Unknown  211s 258ms/step - loss: 1.1136 - sparse_categorical_accuracy: 0.5733


797/Unknown  211s 258ms/step - loss: 1.1133 - sparse_categorical_accuracy: 0.5734


798/Unknown  211s 258ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5735


799/Unknown  212s 258ms/step - loss: 1.1127 - sparse_categorical_accuracy: 0.5736


800/Unknown  212s 258ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5737


801/Unknown  212s 258ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5738


802/Unknown  212s 258ms/step - loss: 1.1118 - sparse_categorical_accuracy: 0.5739


803/Unknown  213s 258ms/step - loss: 1.1115 - sparse_categorical_accuracy: 0.5740


804/Unknown  213s 258ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5741


805/Unknown  213s 258ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5742


806/Unknown  214s 258ms/step - loss: 1.1106 - sparse_categorical_accuracy: 0.5743


807/Unknown  214s 258ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5744


808/Unknown  214s 258ms/step - loss: 1.1100 - sparse_categorical_accuracy: 0.5745


809/Unknown  215s 258ms/step - loss: 1.1097 - sparse_categorical_accuracy: 0.5746


810/Unknown  215s 259ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5747


811/Unknown  215s 259ms/step - loss: 1.1091 - sparse_categorical_accuracy: 0.5747


812/Unknown  215s 259ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5748


813/Unknown  216s 259ms/step - loss: 1.1086 - sparse_categorical_accuracy: 0.5749


814/Unknown  216s 259ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5750


815/Unknown  216s 259ms/step - loss: 1.1080 - sparse_categorical_accuracy: 0.5751


816/Unknown  217s 259ms/step - loss: 1.1077 - sparse_categorical_accuracy: 0.5752


817/Unknown  217s 259ms/step - loss: 1.1074 - sparse_categorical_accuracy: 0.5753


818/Unknown  217s 259ms/step - loss: 1.1071 - sparse_categorical_accuracy: 0.5754


819/Unknown  217s 259ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5755


820/Unknown  218s 259ms/step - loss: 1.1065 - sparse_categorical_accuracy: 0.5756


821/Unknown  218s 259ms/step - loss: 1.1062 - sparse_categorical_accuracy: 0.5757


822/Unknown  218s 259ms/step - loss: 1.1060 - sparse_categorical_accuracy: 0.5758


823/Unknown  219s 259ms/step - loss: 1.1057 - sparse_categorical_accuracy: 0.5759


824/Unknown  219s 259ms/step - loss: 1.1054 - sparse_categorical_accuracy: 0.5760


825/Unknown  219s 259ms/step - loss: 1.1051 - sparse_categorical_accuracy: 0.5761


826/Unknown  219s 259ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5762


827/Unknown  220s 259ms/step - loss: 1.1045 - sparse_categorical_accuracy: 0.5762


828/Unknown  220s 259ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5763


829/Unknown  220s 259ms/step - loss: 1.1039 - sparse_categorical_accuracy: 0.5764


830/Unknown  221s 259ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5765


831/Unknown  221s 259ms/step - loss: 1.1034 - sparse_categorical_accuracy: 0.5766


832/Unknown  221s 259ms/step - loss: 1.1031 - sparse_categorical_accuracy: 0.5767


833/Unknown  222s 259ms/step - loss: 1.1028 - sparse_categorical_accuracy: 0.5768


834/Unknown  222s 259ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5769


835/Unknown  222s 259ms/step - loss: 1.1022 - sparse_categorical_accuracy: 0.5770


836/Unknown  222s 259ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5771


837/Unknown  223s 259ms/step - loss: 1.1017 - sparse_categorical_accuracy: 0.5772


838/Unknown  223s 259ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5773


839/Unknown  223s 259ms/step - loss: 1.1011 - sparse_categorical_accuracy: 0.5773


840/Unknown  223s 259ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5774


841/Unknown  224s 259ms/step - loss: 1.1006 - sparse_categorical_accuracy: 0.5775


842/Unknown  224s 259ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5776


843/Unknown  224s 259ms/step - loss: 1.1000 - sparse_categorical_accuracy: 0.5777


844/Unknown  224s 259ms/step - loss: 1.0997 - sparse_categorical_accuracy: 0.5778


845/Unknown  225s 259ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5779


846/Unknown  225s 259ms/step - loss: 1.0992 - sparse_categorical_accuracy: 0.5780


847/Unknown  225s 259ms/step - loss: 1.0989 - sparse_categorical_accuracy: 0.5781


848/Unknown  225s 259ms/step - loss: 1.0986 - sparse_categorical_accuracy: 0.5782


849/Unknown  226s 259ms/step - loss: 1.0984 - sparse_categorical_accuracy: 0.5782


850/Unknown  226s 259ms/step - loss: 1.0981 - sparse_categorical_accuracy: 0.5783


851/Unknown  226s 259ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5784


852/Unknown  227s 259ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5785


853/Unknown  227s 259ms/step - loss: 1.0973 - sparse_categorical_accuracy: 0.5786


854/Unknown  227s 260ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5787


855/Unknown  228s 260ms/step - loss: 1.0967 - sparse_categorical_accuracy: 0.5788


856/Unknown  228s 260ms/step - loss: 1.0964 - sparse_categorical_accuracy: 0.5789


857/Unknown  228s 260ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5790


858/Unknown  228s 260ms/step - loss: 1.0959 - sparse_categorical_accuracy: 0.5790


859/Unknown  229s 260ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5791


860/Unknown  229s 260ms/step - loss: 1.0954 - sparse_categorical_accuracy: 0.5792


861/Unknown  229s 260ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5793


862/Unknown  229s 260ms/step - loss: 1.0948 - sparse_categorical_accuracy: 0.5794


863/Unknown  230s 260ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5795


864/Unknown  230s 260ms/step - loss: 1.0943 - sparse_categorical_accuracy: 0.5796


865/Unknown  230s 260ms/step - loss: 1.0940 - sparse_categorical_accuracy: 0.5796


866/Unknown  231s 260ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5797


867/Unknown  231s 260ms/step - loss: 1.0935 - sparse_categorical_accuracy: 0.5798


868/Unknown  231s 260ms/step - loss: 1.0932 - sparse_categorical_accuracy: 0.5799


869/Unknown  231s 260ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5800


870/Unknown  232s 260ms/step - loss: 1.0927 - sparse_categorical_accuracy: 0.5801


871/Unknown  232s 260ms/step - loss: 1.0924 - sparse_categorical_accuracy: 0.5802


872/Unknown  232s 260ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5802


873/Unknown  232s 260ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5803


874/Unknown  233s 260ms/step - loss: 1.0916 - sparse_categorical_accuracy: 0.5804


875/Unknown  233s 260ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5805


876/Unknown  233s 260ms/step - loss: 1.0911 - sparse_categorical_accuracy: 0.5806


877/Unknown  233s 260ms/step - loss: 1.0908 - sparse_categorical_accuracy: 0.5807


878/Unknown  234s 260ms/step - loss: 1.0906 - sparse_categorical_accuracy: 0.5808


879/Unknown  234s 260ms/step - loss: 1.0903 - sparse_categorical_accuracy: 0.5808


880/Unknown  234s 260ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5809


881/Unknown  234s 260ms/step - loss: 1.0898 - sparse_categorical_accuracy: 0.5810


882/Unknown  235s 260ms/step - loss: 1.0895 - sparse_categorical_accuracy: 0.5811


883/Unknown  235s 260ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5812


884/Unknown  235s 260ms/step - loss: 1.0890 - sparse_categorical_accuracy: 0.5813


885/Unknown  235s 260ms/step - loss: 1.0887 - sparse_categorical_accuracy: 0.5813


886/Unknown  236s 260ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5814


887/Unknown  236s 260ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5815


888/Unknown  237s 260ms/step - loss: 1.0880 - sparse_categorical_accuracy: 0.5816


889/Unknown  237s 260ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5817


890/Unknown  237s 260ms/step - loss: 1.0874 - sparse_categorical_accuracy: 0.5818


891/Unknown  238s 261ms/step - loss: 1.0872 - sparse_categorical_accuracy: 0.5818


892/Unknown  238s 261ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5819


893/Unknown  238s 261ms/step - loss: 1.0867 - sparse_categorical_accuracy: 0.5820


894/Unknown  239s 261ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5821


895/Unknown  239s 261ms/step - loss: 1.0862 - sparse_categorical_accuracy: 0.5822


896/Unknown  239s 261ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5823


897/Unknown  239s 261ms/step - loss: 1.0856 - sparse_categorical_accuracy: 0.5823


898/Unknown  240s 261ms/step - loss: 1.0854 - sparse_categorical_accuracy: 0.5824


899/Unknown  240s 261ms/step - loss: 1.0851 - sparse_categorical_accuracy: 0.5825


900/Unknown  240s 261ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5826


901/Unknown  240s 261ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5827


902/Unknown  241s 261ms/step - loss: 1.0844 - sparse_categorical_accuracy: 0.5827


903/Unknown  241s 261ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5828


904/Unknown  241s 261ms/step - loss: 1.0839 - sparse_categorical_accuracy: 0.5829


905/Unknown  241s 261ms/step - loss: 1.0836 - sparse_categorical_accuracy: 0.5830


906/Unknown  242s 261ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5831


907/Unknown  242s 261ms/step - loss: 1.0831 - sparse_categorical_accuracy: 0.5832


908/Unknown  242s 261ms/step - loss: 1.0829 - sparse_categorical_accuracy: 0.5832


909/Unknown  243s 261ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5833


910/Unknown  243s 261ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5834


911/Unknown  243s 261ms/step - loss: 1.0821 - sparse_categorical_accuracy: 0.5835


912/Unknown  243s 261ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5836


913/Unknown  244s 261ms/step - loss: 1.0816 - sparse_categorical_accuracy: 0.5836


914/Unknown  244s 261ms/step - loss: 1.0814 - sparse_categorical_accuracy: 0.5837


915/Unknown  244s 261ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5838


916/Unknown  244s 261ms/step - loss: 1.0809 - sparse_categorical_accuracy: 0.5839


917/Unknown  245s 261ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5839


918/Unknown  245s 261ms/step - loss: 1.0804 - sparse_categorical_accuracy: 0.5840


919/Unknown  245s 261ms/step - loss: 1.0801 - sparse_categorical_accuracy: 0.5841


920/Unknown  246s 261ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5842


921/Unknown  246s 261ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5843


922/Unknown  246s 261ms/step - loss: 1.0794 - sparse_categorical_accuracy: 0.5843


923/Unknown  247s 261ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5844


924/Unknown  247s 261ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5845


925/Unknown  247s 261ms/step - loss: 1.0787 - sparse_categorical_accuracy: 0.5846


926/Unknown  248s 261ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5847


927/Unknown  248s 261ms/step - loss: 1.0782 - sparse_categorical_accuracy: 0.5847


928/Unknown  248s 261ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5848


929/Unknown  248s 261ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5849


930/Unknown  249s 261ms/step - loss: 1.0775 - sparse_categorical_accuracy: 0.5850


931/Unknown  249s 261ms/step - loss: 1.0772 - sparse_categorical_accuracy: 0.5850


932/Unknown  249s 261ms/step - loss: 1.0770 - sparse_categorical_accuracy: 0.5851


933/Unknown  250s 262ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5852


934/Unknown  250s 262ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5853


935/Unknown  250s 262ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5854


936/Unknown  250s 262ms/step - loss: 1.0760 - sparse_categorical_accuracy: 0.5854


937/Unknown  251s 262ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5855


938/Unknown  251s 262ms/step - loss: 1.0755 - sparse_categorical_accuracy: 0.5856


939/Unknown  251s 262ms/step - loss: 1.0753 - sparse_categorical_accuracy: 0.5857


940/Unknown  252s 262ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5857


941/Unknown  252s 262ms/step - loss: 1.0748 - sparse_categorical_accuracy: 0.5858


942/Unknown  252s 262ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5859


943/Unknown  252s 262ms/step - loss: 1.0744 - sparse_categorical_accuracy: 0.5860


944/Unknown  253s 262ms/step - loss: 1.0741 - sparse_categorical_accuracy: 0.5860


945/Unknown  253s 262ms/step - loss: 1.0739 - sparse_categorical_accuracy: 0.5861


946/Unknown  253s 262ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5862


947/Unknown  253s 262ms/step - loss: 1.0734 - sparse_categorical_accuracy: 0.5863


948/Unknown  254s 262ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5863


949/Unknown  254s 262ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5864


950/Unknown  254s 262ms/step - loss: 1.0727 - sparse_categorical_accuracy: 0.5865


951/Unknown  254s 262ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5866


952/Unknown  255s 262ms/step - loss: 1.0722 - sparse_categorical_accuracy: 0.5866


953/Unknown  255s 262ms/step - loss: 1.0720 - sparse_categorical_accuracy: 0.5867


954/Unknown  255s 262ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5868


955/Unknown  255s 262ms/step - loss: 1.0715 - sparse_categorical_accuracy: 0.5869


956/Unknown  256s 262ms/step - loss: 1.0713 - sparse_categorical_accuracy: 0.5869


957/Unknown  256s 262ms/step - loss: 1.0711 - sparse_categorical_accuracy: 0.5870


958/Unknown  256s 262ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5871


959/Unknown  256s 262ms/step - loss: 1.0706 - sparse_categorical_accuracy: 0.5872


960/Unknown  257s 262ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5872


961/Unknown  257s 262ms/step - loss: 1.0702 - sparse_categorical_accuracy: 0.5873


962/Unknown  257s 262ms/step - loss: 1.0699 - sparse_categorical_accuracy: 0.5874


963/Unknown  258s 262ms/step - loss: 1.0697 - sparse_categorical_accuracy: 0.5875


964/Unknown  258s 262ms/step - loss: 1.0695 - sparse_categorical_accuracy: 0.5875


965/Unknown  258s 262ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5876


966/Unknown  259s 262ms/step - loss: 1.0690 - sparse_categorical_accuracy: 0.5877


967/Unknown  259s 262ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5878


968/Unknown  259s 262ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5878


969/Unknown  259s 262ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5879


970/Unknown  260s 262ms/step - loss: 1.0681 - sparse_categorical_accuracy: 0.5880


971/Unknown  260s 262ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5880


972/Unknown  260s 262ms/step - loss: 1.0676 - sparse_categorical_accuracy: 0.5881


973/Unknown  261s 262ms/step - loss: 1.0674 - sparse_categorical_accuracy: 0.5882


974/Unknown  261s 262ms/step - loss: 1.0672 - sparse_categorical_accuracy: 0.5883


975/Unknown  261s 262ms/step - loss: 1.0670 - sparse_categorical_accuracy: 0.5883


976/Unknown  261s 262ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5884


977/Unknown  262s 262ms/step - loss: 1.0665 - sparse_categorical_accuracy: 0.5885


978/Unknown  262s 262ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5886


979/Unknown  262s 262ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5886


980/Unknown  263s 262ms/step - loss: 1.0658 - sparse_categorical_accuracy: 0.5887


981/Unknown  263s 262ms/step - loss: 1.0656 - sparse_categorical_accuracy: 0.5888


982/Unknown  263s 262ms/step - loss: 1.0654 - sparse_categorical_accuracy: 0.5888


983/Unknown  263s 262ms/step - loss: 1.0652 - sparse_categorical_accuracy: 0.5889


984/Unknown  264s 262ms/step - loss: 1.0649 - sparse_categorical_accuracy: 0.5890


985/Unknown  264s 262ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5891


986/Unknown  264s 262ms/step - loss: 1.0645 - sparse_categorical_accuracy: 0.5891


987/Unknown  264s 262ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5892


988/Unknown  265s 262ms/step - loss: 1.0641 - sparse_categorical_accuracy: 0.5893


989/Unknown  265s 262ms/step - loss: 1.0638 - sparse_categorical_accuracy: 0.5893


990/Unknown  265s 262ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5894


991/Unknown  265s 262ms/step - loss: 1.0634 - sparse_categorical_accuracy: 0.5895


992/Unknown  266s 262ms/step - loss: 1.0632 - sparse_categorical_accuracy: 0.5896


993/Unknown  266s 262ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5896


994/Unknown  266s 262ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5897


995/Unknown  266s 262ms/step - loss: 1.0625 - sparse_categorical_accuracy: 0.5898


996/Unknown  267s 262ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5898


997/Unknown  267s 262ms/step - loss: 1.0621 - sparse_categorical_accuracy: 0.5899


998/Unknown  267s 262ms/step - loss: 1.0618 - sparse_categorical_accuracy: 0.5900


999/Unknown  267s 262ms/step - loss: 1.0616 - sparse_categorical_accuracy: 0.5900



1000/Unknown 268 秒 262 毫秒/步 - 損失: 1.0614 - 稀疏類別準確度: 0.5901



1001/Unknown 268 秒 262 毫秒/步 - 損失: 1.0612 - 稀疏類別準確度: 0.5902



1002/Unknown 268 秒 262 毫秒/步 - 損失: 1.0610 - 稀疏類別準確度: 0.5903



1003/Unknown 269 秒 262 毫秒/步 - 損失: 1.0608 - 稀疏類別準確度: 0.5903



1004/Unknown 269 秒 262 毫秒/步 - 損失: 1.0605 - 稀疏類別準確度: 0.5904



1005/Unknown 269 秒 262 毫秒/步 - 損失: 1.0603 - 稀疏類別準確度: 0.5905



1006/Unknown 270 秒 263 毫秒/步 - 損失: 1.0601 - 稀疏類別準確度: 0.5905



1007/Unknown 270 秒 263 毫秒/步 - 損失: 1.0599 - 稀疏類別準確度: 0.5906



1008/Unknown 270 秒 263 毫秒/步 - 損失: 1.0597 - 稀疏類別準確度: 0.5907



1009/Unknown 271 秒 263 毫秒/步 - 損失: 1.0595 - 稀疏類別準確度: 0.5907



1010/Unknown 271 秒 263 毫秒/步 - 損失: 1.0592 - 稀疏類別準確度: 0.5908



1011/Unknown 271 秒 263 毫秒/步 - 損失: 1.0590 - 稀疏類別準確度: 0.5909



1012/Unknown 271 秒 263 毫秒/步 - 損失: 1.0588 - 稀疏類別準確度: 0.5909



1013/Unknown 272 秒 263 毫秒/步 - 損失: 1.0586 - 稀疏類別準確度: 0.5910



1014/Unknown 272 秒 263 毫秒/步 - 損失: 1.0584 - 稀疏類別準確度: 0.5911



1015/Unknown 272 秒 263 毫秒/步 - 損失: 1.0582 - 稀疏類別準確度: 0.5912



1016/Unknown 272 秒 263 毫秒/步 - 損失: 1.0580 - 稀疏類別準確度: 0.5912



1017/Unknown 273 秒 263 毫秒/步 - 損失: 1.0578 - 稀疏類別準確度: 0.5913



1018/Unknown 273 秒 263 毫秒/步 - 損失: 1.0575 - 稀疏類別準確度: 0.5914



1019/Unknown 273 秒 263 毫秒/步 - 損失: 1.0573 - 稀疏類別準確度: 0.5914



1020/Unknown 273 秒 263 毫秒/步 - 損失: 1.0571 - 稀疏類別準確度: 0.5915



1021/Unknown 274 秒 263 毫秒/步 - 損失: 1.0569 - 稀疏類別準確度: 0.5916



1022/Unknown 274 秒 263 毫秒/步 - 損失: 1.0567 - 稀疏類別準確度: 0.5916



1023/Unknown 274 秒 263 毫秒/步 - 損失: 1.0565 - 稀疏類別準確度: 0.5917



1024/Unknown 275 秒 263 毫秒/步 - 損失: 1.0563 - 稀疏類別準確度: 0.5918



1025/Unknown 275 秒 263 毫秒/步 - 損失: 1.0561 - 稀疏類別準確度: 0.5918



1026/Unknown 275 秒 263 毫秒/步 - 損失: 1.0559 - 稀疏類別準確度: 0.5919



1027/Unknown 275 秒 263 毫秒/步 - 損失: 1.0556 - 稀疏類別準確度: 0.5920



1028/Unknown 276 秒 263 毫秒/步 - 損失: 1.0554 - 稀疏類別準確度: 0.5920



1029/Unknown 276 秒 263 毫秒/步 - 損失: 1.0552 - 稀疏類別準確度: 0.5921



1030/Unknown 276 秒 263 毫秒/步 - 損失: 1.0550 - 稀疏類別準確度: 0.5922



1031/Unknown 276 秒 263 毫秒/步 - 損失: 1.0548 - 稀疏類別準確度: 0.5922



1032/Unknown 277 秒 263 毫秒/步 - 損失: 1.0546 - 稀疏類別準確度: 0.5923



1033/Unknown 277 秒 263 毫秒/步 - 損失: 1.0544 - 稀疏類別準確度: 0.5924



1034/Unknown 277 秒 263 毫秒/步 - 損失: 1.0542 - 稀疏類別準確度: 0.5924



1035/Unknown 278 秒 263 毫秒/步 - 損失: 1.0540 - 稀疏類別準確度: 0.5925



1036/Unknown 278 秒 263 毫秒/步 - 損失: 1.0538 - 稀疏類別準確度: 0.5926



1037/Unknown 278 秒 263 毫秒/步 - 損失: 1.0536 - 稀疏類別準確度: 0.5926



1038/Unknown 278 秒 263 毫秒/步 - 損失: 1.0533 - 稀疏類別準確度: 0.5927



1039/Unknown 279 秒 263 毫秒/步 - 損失: 1.0531 - 稀疏類別準確度: 0.5928



1040/Unknown 279 秒 263 毫秒/步 - 損失: 1.0529 - 稀疏類別準確度: 0.5928



1041/Unknown 279 秒 263 毫秒/步 - 損失: 1.0527 - 稀疏類別準確度: 0.5929



1042/Unknown 280 秒 263 毫秒/步 - 損失: 1.0525 - 稀疏類別準確度: 0.5930



1043/Unknown 280 秒 263 毫秒/步 - 損失: 1.0523 - 稀疏類別準確度: 0.5930



1044/Unknown 280 秒 263 毫秒/步 - 損失: 1.0521 - 稀疏類別準確度: 0.5931



1045/Unknown 280 秒 263 毫秒/步 - 損失: 1.0519 - 稀疏類別準確度: 0.5932



1046/Unknown 281 秒 263 毫秒/步 - 損失: 1.0517 - 稀疏類別準確度: 0.5932



1047/Unknown 281 秒 263 毫秒/步 - 損失: 1.0515 - 稀疏類別準確度: 0.5933



1048/Unknown 281 秒 263 毫秒/步 - 損失: 1.0513 - 稀疏類別準確度: 0.5934



1049/Unknown 282 秒 263 毫秒/步 - 損失: 1.0511 - 稀疏類別準確度: 0.5934



1050/Unknown 282 秒 263 毫秒/步 - 損失: 1.0509 - 稀疏類別準確度: 0.5935



1051/Unknown 282 秒 263 毫秒/步 - 損失: 1.0507 - 稀疏類別準確度: 0.5935



1052/Unknown 283 秒 263 毫秒/步 - 損失: 1.0505 - 稀疏類別準確度: 0.5936



1053/Unknown 283 秒 263 毫秒/步 - 損失: 1.0503 - 稀疏類別準確度: 0.5937



1054/Unknown 283 秒 263 毫秒/步 - 損失: 1.0501 - 稀疏類別準確度: 0.5937



1055/Unknown 283 秒 263 毫秒/步 - 損失: 1.0499 - 稀疏類別準確度: 0.5938



1056/Unknown 284 秒 263 毫秒/步 - 損失: 1.0497 - 稀疏類別準確度: 0.5939



1057/Unknown 284 秒 263 毫秒/步 - 損失: 1.0495 - 稀疏類別準確度: 0.5939



1058/Unknown 284 秒 263 毫秒/步 - 損失: 1.0493 - 稀疏類別準確度: 0.5940



1059/Unknown 285 秒 263 毫秒/步 - 損失: 1.0491 - 稀疏類別準確度: 0.5941



1060/Unknown 285 秒 263 毫秒/步 - 損失: 1.0489 - 稀疏類別準確度: 0.5941



1061/Unknown 285 秒 263 毫秒/步 - 損失: 1.0487 - 稀疏類別準確度: 0.5942



1062/Unknown 285 秒 263 毫秒/步 - 損失: 1.0485 - 稀疏類別準確度: 0.5943



1063/Unknown 285 秒 263 毫秒/步 - 損失: 1.0483 - 稀疏類別準確度: 0.5943



1064/Unknown 286 秒 263 毫秒/步 - 損失: 1.0481 - 稀疏類別準確度: 0.5944



1065/Unknown 286 秒 263 毫秒/步 - 損失: 1.0479 - 稀疏類別準確度: 0.5944



1066/Unknown 286 秒 263 毫秒/步 - 損失: 1.0477 - 稀疏類別準確度: 0.5945



1067/Unknown 286 秒 263 毫秒/步 - 損失: 1.0475 - 稀疏類別準確度: 0.5946



1068/Unknown 287 秒 263 毫秒/步 - 損失: 1.0473 - 稀疏類別準確度: 0.5946



1069/Unknown 287 秒 263 毫秒/步 - 損失: 1.0471 - 稀疏類別準確度: 0.5947



1070/Unknown 287 秒 263 毫秒/步 - 損失: 1.0469 - 稀疏類別準確度: 0.5948



1071/Unknown 287 秒 263 毫秒/步 - 損失: 1.0467 - 稀疏類別準確度: 0.5948



1072/Unknown 288 秒 263 毫秒/步 - 損失: 1.0465 - 稀疏類別準確度: 0.5949



1073/Unknown 288 秒 263 毫秒/步 - 損失: 1.0463 - 稀疏類別準確度: 0.5949



1074/Unknown 288 秒 263 毫秒/步 - 損失: 1.0461 - 稀疏類別準確度: 0.5950



1075/Unknown 289 秒 263 毫秒/步 - 損失: 1.0459 - 稀疏類別準確度: 0.5951



1076/Unknown 289 秒 263 毫秒/步 - 損失: 1.0457 - 稀疏類別準確度: 0.5951



1077/Unknown 289 秒 263 毫秒/步 - 損失: 1.0455 - 稀疏類別準確度: 0.5952



1078/Unknown 290 秒 264 毫秒/步 - 損失: 1.0453 - 稀疏類別準確度: 0.5953



1079/Unknown 290 秒 264 毫秒/步 - 損失: 1.0451 - 稀疏類別準確度: 0.5953



1080/Unknown 290 秒 264 毫秒/步 - 損失: 1.0449 - 稀疏類別準確度: 0.5954



1081/Unknown 291 秒 264 毫秒/步 - 損失: 1.0447 - 稀疏類別準確度: 0.5954



1082/Unknown 291 秒 264 毫秒/步 - 損失: 1.0445 - 稀疏類別準確度: 0.5955



1083/Unknown 291 秒 264 毫秒/步 - 損失: 1.0443 - 稀疏類別準確度: 0.5956



1084/Unknown 291 秒 264 毫秒/步 - 損失: 1.0441 - 稀疏類別準確度: 0.5956



1085/Unknown 292 秒 264 毫秒/步 - 損失: 1.0439 - 稀疏類別準確度: 0.5957



1086/Unknown 292 秒 264 毫秒/步 - 損失: 1.0437 - 稀疏類別準確度: 0.5957



1087/Unknown 292 秒 264 毫秒/步 - 損失: 1.0436 - 稀疏類別準確度: 0.5958



1088/Unknown 293 秒 264 毫秒/步 - 損失: 1.0434 - 稀疏類別準確度: 0.5959



1089/Unknown 293 秒 264 毫秒/步 - 損失: 1.0432 - 稀疏類別準確度: 0.5959



1090/Unknown 293 秒 264 毫秒/步 - 損失: 1.0430 - 稀疏類別準確度: 0.5960



1091/Unknown 293 秒 264 毫秒/步 - 損失: 1.0428 - 稀疏類別準確度: 0.5961



1092/Unknown 294 秒 264 毫秒/步 - 損失: 1.0426 - 稀疏類別準確度: 0.5961



1093/Unknown 294 秒 264 毫秒/步 - 損失: 1.0424 - 稀疏類別準確度: 0.5962



1094/Unknown 294 秒 264 毫秒/步 - 損失: 1.0422 - 稀疏類別準確度: 0.5962



1095/Unknown 294 秒 264 毫秒/步 - 損失: 1.0420 - 稀疏類別準確度: 0.5963



1096/Unknown 295 秒 264 毫秒/步 - 損失: 1.0418 - 稀疏類別準確度: 0.5964



1097/Unknown 295 秒 264 毫秒/步 - 損失: 1.0416 - 稀疏類別準確度: 0.5964



1098/Unknown 295 秒 264 毫秒/步 - 損失: 1.0414 - 稀疏類別準確度: 0.5965



1099/Unknown 295 秒 264 毫秒/步 - 損失: 1.0413 - 稀疏類別準確度: 0.5965



1100/Unknown 296 秒 264 毫秒/步 - 損失: 1.0411 - 稀疏類別準確度: 0.5966



1101/Unknown 296 秒 264 毫秒/步 - 損失: 1.0409 - 稀疏類別準確度: 0.5967



1102/Unknown 296 秒 264 毫秒/步 - 損失: 1.0407 - 稀疏類別準確度: 0.5967



1103/Unknown 296 秒 264 毫秒/步 - 損失: 1.0405 - 稀疏類別準確度: 0.5968



1104/Unknown 297 秒 264 毫秒/步 - 損失: 1.0403 - 稀疏類別準確度: 0.5968



1105/Unknown 297 秒 264 毫秒/步 - 損失: 1.0401 - 稀疏類別準確度: 0.5969



1106/Unknown 297 秒 264 毫秒/步 - 損失: 1.0399 - 稀疏類別準確度: 0.5970



1107/Unknown 298 秒 264 毫秒/步 - 損失: 1.0397 - 稀疏類別準確度: 0.5970



1108/Unknown 298 秒 264 毫秒/步 - 損失: 1.0396 - 稀疏類別準確度: 0.5971



1109/Unknown 298 秒 264 毫秒/步 - 損失: 1.0394 - 稀疏類別準確度: 0.5971



1110/Unknown 299 秒 264 毫秒/步 - 損失: 1.0392 - 稀疏類別準確度: 0.5972



1111/Unknown 299 秒 264 毫秒/步 - 損失: 1.0390 - 稀疏類別準確度: 0.5973



1112/Unknown 299 秒 264 毫秒/步 - 損失: 1.0388 - 稀疏類別準確度: 0.5973



1113/Unknown 299 秒 264 毫秒/步 - 損失: 1.0386 - 稀疏類別準確度: 0.5974



1114/Unknown 300 秒 264 毫秒/步 - 損失: 1.0384 - 稀疏類別準確度: 0.5974



1115/Unknown 300 秒 264 毫秒/步 - 損失: 1.0382 - 稀疏類別準確度: 0.5975



1116/Unknown 300 秒 264 毫秒/步 - 損失: 1.0381 - 稀疏類別準確度: 0.5976



1117/Unknown 300 秒 264 毫秒/步 - 損失: 1.0379 - 稀疏類別準確度: 0.5976



1118/Unknown 301 秒 264 毫秒/步 - 損失: 1.0377 - 稀疏類別準確度: 0.5977



1119/Unknown 301 秒 264 毫秒/步 - 損失: 1.0375 - 稀疏類別準確度: 0.5977



1120/Unknown 301 秒 264 毫秒/步 - 損失: 1.0373 - 稀疏類別準確度: 0.5978



1121/Unknown 301 秒 264 毫秒/步 - 損失: 1.0371 - 稀疏類別準確度: 0.5978



1122/Unknown 302 秒 264 毫秒/步 - 損失: 1.0369 - 稀疏類別準確度: 0.5979



1123/Unknown 302 秒 264 毫秒/步 - 損失: 1.0368 - 稀疏類別準確度: 0.5980



1124/Unknown 302 秒 264 毫秒/步 - 損失: 1.0366 - 稀疏類別準確度: 0.5980



1125/Unknown 302 秒 264 毫秒/步 - 損失: 1.0364 - 稀疏類別準確度: 0.5981



1126/Unknown 303 秒 264 毫秒/步 - 損失: 1.0362 - 稀疏類別準確度: 0.5981



1127/Unknown 303 秒 264 毫秒/步 - 損失: 1.0360 - 稀疏類別準確度: 0.5982



1128/Unknown 303 秒 264 毫秒/步 - 損失: 1.0358 - 稀疏類別準確度: 0.5983



1129/Unknown 303 秒 264 毫秒/步 - 損失: 1.0357 - 稀疏類別準確度: 0.5983



1130/Unknown 304 秒 264 毫秒/步 - 損失: 1.0355 - 稀疏類別準確度: 0.5984



1131/Unknown 304 秒 264 毫秒/步 - 損失: 1.0353 - 稀疏類別準確度: 0.5984



1132/Unknown 304 秒 264 毫秒/步 - 損失: 1.0351 - 稀疏類別準確度: 0.5985



1133/Unknown 305 秒 264 毫秒/步 - 損失: 1.0349 - 稀疏類別準確度: 0.5985



1134/Unknown 305 秒 264 毫秒/步 - 損失: 1.0347 - 稀疏類別準確度: 0.5986



1135/Unknown 305 秒 264 毫秒/步 - 損失: 1.0346 - 稀疏類別準確度: 0.5987



1136/Unknown 306 秒 264 毫秒/步 - 損失: 1.0344 - 稀疏類別準確度: 0.5987



1137/Unknown 306 秒 264 毫秒/步 - 損失: 1.0342 - 稀疏類別準確度: 0.5988



1138/Unknown 306 秒 264 毫秒/步 - 損失: 1.0340 - 稀疏類別準確度: 0.5988



1139/Unknown 306 秒 264 毫秒/步 - 損失: 1.0338 - 稀疏類別準確度: 0.5989



1140/Unknown 307 秒 264 毫秒/步 - 損失: 1.0337 - 稀疏類別準確度: 0.5990



1141/Unknown 307 秒 264 毫秒/步 - 損失: 1.0335 - 稀疏類別準確度: 0.5990



1142/Unknown 307 秒 264 毫秒/步 - 損失: 1.0333 - 稀疏類別準確度: 0.5991



1143/Unknown 308 秒 264 毫秒/步 - 損失: 1.0331 - 稀疏類別準確度: 0.5991



1144/Unknown 308 秒 264 毫秒/步 - 損失: 1.0329 - 稀疏類別準確度: 0.5992



1145/Unknown 308 秒 264 毫秒/步 - 損失: 1.0328 - 稀疏類別準確度: 0.5992



1146/Unknown 308 秒 264 毫秒/步 - 損失: 1.0326 - 稀疏類別準確度: 0.5993



1147/Unknown 309 秒 264 毫秒/步 - 損失: 1.0324 - 稀疏類別準確度: 0.5993



1148/Unknown 309 秒 264 毫秒/步 - 損失: 1.0322 - 稀疏類別準確度: 0.5994



1149/Unknown 309 秒 264 毫秒/步 - 損失: 1.0320 - 稀疏類別準確度: 0.5995



1150/Unknown 310 秒 264 毫秒/步 - 損失: 1.0319 - 稀疏類別準確度: 0.5995



1151/Unknown 310 秒 264 毫秒/步 - 損失: 1.0317 - 稀疏類別準確度: 0.5996



1152/Unknown 310 秒 264 毫秒/步 - 損失: 1.0315 - 稀疏類別準確度: 0.5996



1153/Unknown 310 秒 264 毫秒/步 - 損失: 1.0313 - 稀疏類別準確度: 0.5997



1154/Unknown 311 秒 264 毫秒/步 - 損失: 1.0311 - 稀疏類別準確度: 0.5997



1155/Unknown 311 秒 265 毫秒/步 - 損失: 1.0310 - 稀疏類別準確度: 0.5998



1156/Unknown 311 秒 265 毫秒/步 - 損失: 1.0308 - 稀疏類別準確度: 0.5999



1157/Unknown 312 秒 265 毫秒/步 - 損失: 1.0306 - 稀疏類別準確度: 0.5999



1158/Unknown 312 秒 265 毫秒/步 - 損失: 1.0304 - 稀疏類別準確度: 0.6000



1159/Unknown 312 秒 265 毫秒/步 - 損失: 1.0303 - 稀疏類別準確度: 0.6000



1160/Unknown 312 秒 265 毫秒/步 - 損失: 1.0301 - 稀疏類別準確度: 0.6001



1161/Unknown 313 秒 265 毫秒/步 - 損失: 1.0299 - 稀疏類別準確度: 0.6001



1162/Unknown 313 秒 265 毫秒/步 - 損失: 1.0297 - 稀疏類別準確度: 0.6002



1163/Unknown 313 秒 265 毫秒/步 - 損失: 1.0296 - 稀疏類別準確度: 0.6003



1164/Unknown 314 秒 265 毫秒/步 - 損失: 1.0294 - 稀疏類別準確度: 0.6003



1165/Unknown 314 秒 265 毫秒/步 - 損失: 1.0292 - 稀疏類別準確度: 0.6004



1166/Unknown 314 秒 265 毫秒/步 - 損失: 1.0290 - 稀疏類別準確度: 0.6004



1167/Unknown 314 秒 265 毫秒/步 - 損失: 1.0289 - 稀疏類別準確度: 0.6005



1168/Unknown 315 秒 265 毫秒/步 - 損失: 1.0287 - 稀疏類別準確度: 0.6005



1169/Unknown 315 秒 265 毫秒/步 - 損失: 1.0285 - 稀疏類別準確度: 0.6006



1170/Unknown 315 秒 265 毫秒/步 - 損失: 1.0283 - 稀疏類別準確度: 0.6006



1171/Unknown 315 秒 265 毫秒/步 - 損失: 1.0282 - 稀疏類別準確度: 0.6007



1172/Unknown 316 秒 264 毫秒/步 - 損失: 1.0280 - 稀疏類別準確度: 0.6008



1173/Unknown 316 秒 264 毫秒/步 - 損失: 1.0278 - 稀疏類別準確度: 0.6008



1174/Unknown 316 秒 264 毫秒/步 - 損失: 1.0276 - 稀疏類別準確度: 0.6009



1175/Unknown 316 秒 264 毫秒/步 - 損失: 1.0275 - 稀疏類別準確度: 0.6009



1176/Unknown 316 秒 264 毫秒/步 - 損失: 1.0273 - 稀疏類別準確度: 0.6010



1177/Unknown 317 秒 264 毫秒/步 - 損失: 1.0271 - 稀疏類別準確度: 0.6010



1178/Unknown 317 秒 264 毫秒/步 - 損失: 1.0269 - 稀疏類別準確度: 0.6011



1179/Unknown 317 秒 264 毫秒/步 - 損失: 1.0268 - 稀疏類別準確度: 0.6011



1180/Unknown 317 秒 264 毫秒/步 - 損失: 1.0266 - 稀疏類別準確度: 0.6012



1181/Unknown 318 秒 264 毫秒/步 - 損失: 1.0264 - 稀疏類別準確度: 0.6012



1182/Unknown 318 秒 264 毫秒/步 - 損失: 1.0263 - 稀疏類別準確度: 0.6013



1183/Unknown 318 秒 264 毫秒/步 - 損失: 1.0261 - 稀疏類別準確度: 0.6014



1184/Unknown 318 秒 264 毫秒/步 - 損失: 1.0259 - 稀疏類別準確度: 0.6014



1185/Unknown 319 秒 264 毫秒/步 - 損失: 1.0257 - 稀疏類別準確度: 0.6015



1186/Unknown 319 秒 264 毫秒/步 - 損失: 1.0256 - 稀疏類別準確度: 0.6015



1187/Unknown 319 秒 264 毫秒/步 - 損失: 1.0254 - 稀疏類別準確度: 0.6016



1188/Unknown 319 秒 264 毫秒/步 - 損失: 1.0252 - 稀疏類別準確度: 0.6016



1189/Unknown 320 秒 264 毫秒/步 - 損失: 1.0251 - 稀疏類別準確度: 0.6017



1190/Unknown 320 秒 264 毫秒/步 - 損失: 1.0249 - 稀疏類別準確度: 0.6017



1191/Unknown 320 秒 264 毫秒/步 - 損失: 1.0247 - 稀疏類別準確度: 0.6018



1192/Unknown 320 秒 264 毫秒/步 - 損失: 1.0245 - 稀疏類別準確度: 0.6018



1193/Unknown 321 秒 264 毫秒/步 - 損失: 1.0244 - 稀疏類別準確度: 0.6019



1194/Unknown 321 秒 264 毫秒/步 - 損失: 1.0242 - 稀疏類別準確度: 0.6019



1195/Unknown 321 秒 264 毫秒/步 - 損失: 1.0240 - 稀疏類別準確度: 0.6020



1196/Unknown 321 秒 264 毫秒/步 - 損失: 1.0239 - 稀疏類別準確度: 0.6021



1197/Unknown 322 秒 264 毫秒/步 - 損失: 1.0237 - 稀疏類別準確度: 0.6021



1198/Unknown 322 秒 264 毫秒/步 - 損失: 1.0235 - 稀疏類別準確度: 0.6022



1199/Unknown 322 秒 264 毫秒/步 - 損失: 1.0234 - 稀疏類別準確度: 0.6022



1200/Unknown 322 秒 264 毫秒/步 - 損失: 1.0232 - 稀疏類別準確度: 0.6023



1201/Unknown 323 秒 264 毫秒/步 - 損失: 1.0230 - 稀疏類別準確度: 0.6023



1202/Unknown 323 秒 264 毫秒/步 - 損失: 1.0229 - 稀疏類別準確度: 0.6024



1203/Unknown 323 秒 264 毫秒/步 - 損失: 1.0227 - 稀疏類別準確度: 0.6024



1204/Unknown 323 秒 264 毫秒/步 - 損失: 1.0225 - 稀疏類別準確度: 0.6025



1205/Unknown 324 秒 264 毫秒/步 - 損失: 1.0224 - 稀疏類別準確度: 0.6025



1206/Unknown 324 秒 264 毫秒/步 - 損失: 1.0222 - 稀疏類別準確度: 0.6026



1207/Unknown 324 秒 264 毫秒/步 - 損失: 1.0220 - 稀疏類別準確度: 0.6026



1208/Unknown 324 秒 264 毫秒/步 - 損失: 1.0219 - 稀疏類別準確度: 0.6027



1209/Unknown 325 秒 264 毫秒/步 - 損失: 1.0217 - 稀疏類別準確度: 0.6027



1210/Unknown 325 秒 264 毫秒/步 - 損失: 1.0215 - 稀疏類別準確度: 0.6028



1211/Unknown 325 秒 264 毫秒/步 - 損失: 1.0214 - 稀疏類別準確度: 0.6029



1212/Unknown 326 秒 264 毫秒/步 - 損失: 1.0212 - 稀疏類別準確度: 0.6029



1213/Unknown 326 秒 264 毫秒/步 - 損失: 1.0210 - 稀疏類別準確度: 0.6030



1214/Unknown 326 秒 264 毫秒/步 - 損失: 1.0209 - 稀疏類別準確度: 0.6030



1215/Unknown 327 秒 264 毫秒/步 - 損失: 1.0207 - 稀疏類別準確度: 0.6031



1216/Unknown 327 秒 264 毫秒/步 - 損失: 1.0205 - 稀疏類別準確度: 0.6031



1217/Unknown 327 秒 264 毫秒/步 - 損失: 1.0204 - 稀疏類別準確度: 0.6032



1218/Unknown 327 秒 264 毫秒/步 - 損失: 1.0202 - 稀疏類別準確度: 0.6032



1219/Unknown 328 秒 264 毫秒/步 - 損失: 1.0200 - 稀疏類別準確度: 0.6033



1220/Unknown 328 秒 264 毫秒/步 - 損失: 1.0199 - 稀疏類別準確度: 0.6033



1221/Unknown 328 秒 264 毫秒/步 - 損失: 1.0197 - 稀疏類別準確度: 0.6034



1222/Unknown 328 秒 264 毫秒/步 - 損失: 1.0196 - 稀疏類別準確度: 0.6034



1223/Unknown 329 秒 264 毫秒/步 - 損失: 1.0194 - 稀疏類別準確度: 0.6035



1224/Unknown 329 秒 264 毫秒/步 - 損失: 1.0192 - 稀疏類別準確度: 0.6035



1225/Unknown 329 秒 264 毫秒/步 - 損失: 1.0191 - 稀疏類別準確度: 0.6036



1226/Unknown 329 秒 264 毫秒/步 - 損失: 1.0189 - 稀疏類別準確度: 0.6036



1227/Unknown 330 秒 264 毫秒/步 - 損失: 1.0187 - 稀疏類別準確度: 0.6037



1228/Unknown 330 秒 264 毫秒/步 - 損失: 1.0186 - 稀疏類別準確度: 0.6037



1229/Unknown 330 秒 264 毫秒/步 - 損失: 1.0184 - 稀疏類別準確度: 0.6038



1230/Unknown 330 秒 264 毫秒/步 - 損失: 1.0183 - 稀疏類別準確度: 0.6038



1231/Unknown 331 秒 264 毫秒/步 - 損失: 1.0181 - 稀疏類別準確度: 0.6039



1232/Unknown 331 秒 264 毫秒/步 - 損失: 1.0179 - 稀疏類別準確度: 0.6039



1233/Unknown 331 秒 264 毫秒/步 - 損失: 1.0178 - 稀疏類別準確度: 0.6040



1234/Unknown 331 秒 264 毫秒/步 - 損失: 1.0176 - 稀疏類別準確度: 0.6040



1235/Unknown 332 秒 264 毫秒/步 - 損失: 1.0174 - 稀疏類別準確度: 0.6041



1236/Unknown 332 秒 264 毫秒/步 - 損失: 1.0173 - 稀疏類別準確度: 0.6041



1237/Unknown 332 秒 264 毫秒/步 - 損失: 1.0171 - 稀疏類別準確度: 0.6042



1238/Unknown 332 秒 264 毫秒/步 - 損失: 1.0170 - 稀疏類別準確度: 0.6042



1239/Unknown 333 秒 264 毫秒/步 - 損失: 1.0168 - 稀疏類別準確度: 0.6043



1240/Unknown 333 秒 264 毫秒/步 - 損失: 1.0166 - 稀疏類別準確度: 0.6043



1241/Unknown 334 秒 264 毫秒/步 - 損失: 1.0165 - 稀疏類別準確度: 0.6044



1242/Unknown 334 秒 264 毫秒/步 - 損失: 1.0163 - 稀疏類別準確度: 0.6044



1243/Unknown 334 秒 264 毫秒/步 - 損失: 1.0162 - 稀疏類別準確度: 0.6045



1244/Unknown 335 秒 265 毫秒/步 - 損失: 1.0160 - 稀疏類別準確度: 0.6045



1245/Unknown 335 秒 265 毫秒/步 - 損失: 1.0158 - 稀疏類別準確度: 0.6046



1246/Unknown 335 秒 265 毫秒/步 - 損失: 1.0157 - 稀疏類別準確度: 0.6046



1247/Unknown 335 秒 265 毫秒/步 - 損失: 1.0155 - 稀疏類別準確度: 0.6047



1248/Unknown 336 秒 265 毫秒/步 - 損失: 1.0154 - 稀疏類別準確度: 0.6048



1249/Unknown 336 秒 265 毫秒/步 - 損失: 1.0152 - 稀疏類別準確度: 0.6048



1250/Unknown 336 秒 265 毫秒/步 - 損失: 1.0150 - 稀疏類別準確度: 0.6049



1251/Unknown 337 秒 265 毫秒/步 - 損失: 1.0149 - 稀疏類別準確度: 0.6049



1252/Unknown 337 秒 265 毫秒/步 - 損失: 1.0147 - 稀疏類別準確度: 0.6050



1253/Unknown 337 秒 265 毫秒/步 - 損失: 1.0146 - 稀疏類別準確度: 0.6050



1254/Unknown 337 秒 265 毫秒/步 - 損失: 1.0144 - 稀疏類別準確度: 0.6051



1255/Unknown 338 秒 265 毫秒/步 - 損失: 1.0143 - 稀疏類別準確度: 0.6051



1256/Unknown 338 秒 265 毫秒/步 - 損失: 1.0141 - 稀疏類別準確度: 0.6052



1257/Unknown 338 秒 264 毫秒/步 - 損失: 1.0139 - 稀疏類別準確度: 0.6052



1258/Unknown 338 秒 264 毫秒/步 - 損失: 1.0138 - 稀疏類別準確度: 0.6053



1259/Unknown 338 秒 264 毫秒/步 - 損失: 1.0136 - 稀疏類別準確度: 0.6053



1260/Unknown 339 秒 264 毫秒/步 - 損失: 1.0135 - 稀疏類別準確度: 0.6054



1261/Unknown 339 秒 264 毫秒/步 - 損失: 1.0133 - 稀疏類別準確度: 0.6054



1262/Unknown 339 秒 264 毫秒/步 - 損失: 1.0132 - 稀疏類別準確度: 0.6055



1263/Unknown 339 秒 264 毫秒/步 - 損失: 1.0130 - 稀疏類別準確度: 0.6055



1264/Unknown 340 秒 264 毫秒/步 - 損失: 1.0128 - 稀疏類別準確度: 0.6055



1265/Unknown 340 秒 264 毫秒/步 - 損失: 1.0127 - 稀疏類別準確度: 0.6056



1266/Unknown 340 秒 264 毫秒/步 - 損失: 1.0125 - 稀疏類別準確度: 0.6056



1267/Unknown 340 秒 264 毫秒/步 - 損失: 1.0124 - 稀疏類別準確度: 0.6057



1268/Unknown 341 秒 264 毫秒/步 - 損失: 1.0122 - 稀疏類別準確度: 0.6057



1269/Unknown 341 秒 264 毫秒/步 - 損失: 1.0121 - 稀疏類別準確度: 0.6058



1270/Unknown 341 秒 264 毫秒/步 - 損失: 1.0119 - 稀疏類別準確度: 0.6058



1271/Unknown 341 秒 264 毫秒/步 - 損失: 1.0118 - 稀疏類別準確度: 0.6059



1272/Unknown 342 秒 264 毫秒/步 - 損失: 1.0116 - 稀疏類別準確度: 0.6059



1273/Unknown 342 秒 264 毫秒/步 - 損失: 1.0114 - 稀疏類別準確度: 0.6060



1274/Unknown 342 秒 264 毫秒/步 - 損失: 1.0113 - 稀疏類別準確度: 0.6060



1275/Unknown 342 秒 264 毫秒/步 - 損失: 1.0111 - 稀疏類別準確度: 0.6061



1276/Unknown 343 秒 264 毫秒/步 - 損失: 1.0110 - 稀疏類別準確度: 0.6061



1277/Unknown 343 秒 264 毫秒/步 - 損失: 1.0108 - 稀疏類別準確度: 0.6062



1278/Unknown 343 秒 264 毫秒/步 - 損失: 1.0107 - 稀疏類別準確度: 0.6062



1279/Unknown 344 秒 264 毫秒/步 - 損失: 1.0105 - 稀疏類別準確度: 0.6063



1280/Unknown 344 秒 264 毫秒/步 - 損失: 1.0104 - 稀疏類別準確度: 0.6063



1281/Unknown 344 秒 264 毫秒/步 - 損失: 1.0102 - 稀疏類別準確度: 0.6064



1282/Unknown 345 秒 264 毫秒/步 - 損失: 1.0101 - 稀疏類別準確度: 0.6064



1283/Unknown 345 秒 265 毫秒/步 - 損失: 1.0099 - 稀疏類別準確度: 0.6065



1284/Unknown 345 秒 265 毫秒/步 - 損失: 1.0098 - 稀疏類別準確度: 0.6065



1285/Unknown 345 秒 265 毫秒/步 - 損失: 1.0096 - 稀疏類別準確度: 0.6066



1286/Unknown 346 秒 265 毫秒/步 - 損失: 1.0095 - 稀疏類別準確度: 0.6066



1287/Unknown 346 秒 265 毫秒/步 - 損失: 1.0093 - 稀疏類別準確度: 0.6067



1288/Unknown 346 秒 265 毫秒/步 - 損失: 1.0092 - 稀疏類別準確度: 0.6067



1289/Unknown 347 秒 265 毫秒/步 - 損失: 1.0090 - 稀疏類別準確度: 0.6068



1290/Unknown 347 秒 265 毫秒/步 - 損失: 1.0088 - 稀疏類別準確度: 0.6068



1291/Unknown 347 秒 265 毫秒/步 - 損失: 1.0087 - 稀疏類別準確度: 0.6069



1292/Unknown 347 秒 265 毫秒/步 - 損失: 1.0085 - 稀疏類別準確度: 0.6069



1293/Unknown 348 秒 265 毫秒/步 - 損失: 1.0084 - 稀疏類別準確度: 0.6070



1294/Unknown 348 秒 265 毫秒/步 - 損失: 1.0082 - 稀疏類別準確度: 0.6070



1295/Unknown 348 秒 265 毫秒/步 - 損失: 1.0081 - 稀疏類別準確度: 0.6071



1296/Unknown 349 秒 265 毫秒/步 - 損失: 1.0079 - 稀疏類別準確度: 0.6071



1297/Unknown 349 秒 265 毫秒/步 - 損失: 1.0078 - 稀疏類別準確度: 0.6071



1298/Unknown 349 秒 265 毫秒/步 - 損失: 1.0076 - 稀疏類別準確度: 0.6072



1299/Unknown 350 秒 265 毫秒/步 - 損失: 1.0075 - 稀疏類別準確度: 0.6072



1300/Unknown 350 秒 265 毫秒/步 - 損失: 1.0073 - 稀疏類別準確度: 0.6073



1301/Unknown 350 秒 265 毫秒/步 - 損失: 1.0072 - 稀疏類別準確度: 0.6073



1302/Unknown 350 秒 265 毫秒/步 - 損失: 1.0070 - 稀疏類別準確度: 0.6074



1303/Unknown 351 秒 265 毫秒/步 - 損失: 1.0069 - 稀疏類別準確度: 0.6074



1304/Unknown 351 秒 265 毫秒/步 - 損失: 1.0067 - 稀疏類別準確度: 0.6075



1305/Unknown 351 秒 265 毫秒/步 - 損失: 1.0066 - 稀疏類別準確度: 0.6075



1306/Unknown 351 秒 265 毫秒/步 - 損失: 1.0064 - 稀疏類別準確度: 0.6076



1307/Unknown 352 秒 265 毫秒/步 - 損失: 1.0063 - 稀疏類別準確度: 0.6076



1308/Unknown 352 秒 265 毫秒/步 - 損失: 1.0061 - 稀疏類別準確度: 0.6077



1309/Unknown 352 秒 265 毫秒/步 - 損失: 1.0060 - 稀疏類別準確度: 0.6077



1310/Unknown 353 秒 265 毫秒/步 - 損失: 1.0059 - 稀疏類別準確度: 0.6078



1311/Unknown 353 秒 265 毫秒/步 - 損失: 1.0057 - 稀疏類別準確度: 0.6078



1312/Unknown 353 秒 265 毫秒/步 - 損失: 1.0056 - 稀疏類別準確度: 0.6079



1313/Unknown 354 秒 265 毫秒/步 - 損失: 1.0054 - 稀疏類別準確度: 0.6079



1314/Unknown 354 秒 265 毫秒/步 - 損失: 1.0053 - 稀疏類別準確度: 0.6079



1315/Unknown 354 秒 265 毫秒/步 - 損失: 1.0051 - 稀疏類別準確度: 0.6080



1316/Unknown 354 秒 265 毫秒/步 - 損失: 1.0050 - 稀疏類別準確度: 0.6080



1317/未知 355秒 265毫秒/步 - 損失: 1.0048 - 稀疏類別準確度: 0.6081



1318/未知 355秒 265毫秒/步 - 損失: 1.0047 - 稀疏類別準確度: 0.6081



1319/未知 355秒 265毫秒/步 - 損失: 1.0045 - 稀疏類別準確度: 0.6082



1320/未知 356秒 265毫秒/步 - 損失: 1.0044 - 稀疏類別準確度: 0.6082



1321/未知 356秒 265毫秒/步 - 損失: 1.0042 - 稀疏類別準確度: 0.6083



1322/未知 356秒 265毫秒/步 - 損失: 1.0041 - 稀疏類別準確度: 0.6083



1323/未知 356秒 265毫秒/步 - 損失: 1.0039 - 稀疏類別準確度: 0.6084



1324/未知 357秒 265毫秒/步 - 損失: 1.0038 - 稀疏類別準確度: 0.6084



1325/未知 357秒 265毫秒/步 - 損失: 1.0036 - 稀疏類別準確度: 0.6085



1326/未知 357秒 265毫秒/步 - 損失: 1.0035 - 稀疏類別準確度: 0.6085



1327/未知 358秒 265毫秒/步 - 損失: 1.0034 - 稀疏類別準確度: 0.6086



1328/未知 358秒 265毫秒/步 - 損失: 1.0032 - 稀疏類別準確度: 0.6086



1329/未知 358秒 265毫秒/步 - 損失: 1.0031 - 稀疏類別準確度: 0.6086



1330/未知 358秒 265毫秒/步 - 損失: 1.0029 - 稀疏類別準確度: 0.6087



1331/未知 359秒 265毫秒/步 - 損失: 1.0028 - 稀疏類別準確度: 0.6087



1332/未知 359秒 265毫秒/步 - 損失: 1.0026 - 稀疏類別準確度: 0.6088



1333/未知 359秒 265毫秒/步 - 損失: 1.0025 - 稀疏類別準確度: 0.6088



1334/未知 359秒 265毫秒/步 - 損失: 1.0023 - 稀疏類別準確度: 0.6089



1335/未知 360秒 265毫秒/步 - 損失: 1.0022 - 稀疏類別準確度: 0.6089



1336/未知 360秒 265毫秒/步 - 損失: 1.0021 - 稀疏類別準確度: 0.6090



1337/未知 360秒 265毫秒/步 - 損失: 1.0019 - 稀疏類別準確度: 0.6090



1338/未知 360秒 265毫秒/步 - 損失: 1.0018 - 稀疏類別準確度: 0.6091



1339/未知 361秒 265毫秒/步 - 損失: 1.0016 - 稀疏類別準確度: 0.6091



1340/未知 361秒 265毫秒/步 - 損失: 1.0015 - 稀疏類別準確度: 0.6091



1341/未知 361秒 265毫秒/步 - 損失: 1.0013 - 稀疏類別準確度: 0.6092



1342/未知 361秒 265毫秒/步 - 損失: 1.0012 - 稀疏類別準確度: 0.6092



1343/未知 362秒 265毫秒/步 - 損失: 1.0010 - 稀疏類別準確度: 0.6093



1344/未知 362秒 265毫秒/步 - 損失: 1.0009 - 稀疏類別準確度: 0.6093



1345/未知 362秒 265毫秒/步 - 損失: 1.0008 - 稀疏類別準確度: 0.6094



1346/未知 363秒 265毫秒/步 - 損失: 1.0006 - 稀疏類別準確度: 0.6094



1347/未知 363秒 265毫秒/步 - 損失: 1.0005 - 稀疏類別準確度: 0.6095



1348/未知 363秒 265毫秒/步 - 損失: 1.0003 - 稀疏類別準確度: 0.6095



1349/未知 364秒 265毫秒/步 - 損失: 1.0002 - 稀疏類別準確度: 0.6096



1350/未知 364秒 265毫秒/步 - 損失: 1.0000 - 稀疏類別準確度: 0.6096



1351/未知 364秒 265毫秒/步 - 損失: 0.9999 - 稀疏類別準確度: 0.6096



1352/未知 364秒 265毫秒/步 - 損失: 0.9998 - 稀疏類別準確度: 0.6097



1353/未知 365秒 265毫秒/步 - 損失: 0.9996 - 稀疏類別準確度: 0.6097



1354/未知 365秒 265毫秒/步 - 損失: 0.9995 - 稀疏類別準確度: 0.6098



1355/未知 365秒 265毫秒/步 - 損失: 0.9993 - 稀疏類別準確度: 0.6098



1356/未知 366秒 265毫秒/步 - 損失: 0.9992 - 稀疏類別準確度: 0.6099



1357/未知 366秒 266毫秒/步 - 損失: 0.9991 - 稀疏類別準確度: 0.6099



1358/未知 366秒 266毫秒/步 - 損失: 0.9989 - 稀疏類別準確度: 0.6100



1359/未知 366秒 266毫秒/步 - 損失: 0.9988 - 稀疏類別準確度: 0.6100



1360/未知 367秒 266毫秒/步 - 損失: 0.9986 - 稀疏類別準確度: 0.6100



1361/未知 367秒 266毫秒/步 - 損失: 0.9985 - 稀疏類別準確度: 0.6101



1362/未知 367秒 265毫秒/步 - 損失: 0.9984 - 稀疏類別準確度: 0.6101



1363/未知 367秒 265毫秒/步 - 損失: 0.9982 - 稀疏類別準確度: 0.6102



1364/未知 368秒 266毫秒/步 - 損失: 0.9981 - 稀疏類別準確度: 0.6102



1365/未知 368秒 266毫秒/步 - 損失: 0.9979 - 稀疏類別準確度: 0.6103



1366/未知 368秒 266毫秒/步 - 損失: 0.9978 - 稀疏類別準確度: 0.6103



1367/未知 369秒 266毫秒/步 - 損失: 0.9977 - 稀疏類別準確度: 0.6104



1368/未知 369秒 266毫秒/步 - 損失: 0.9975 - 稀疏類別準確度: 0.6104



1369/未知 369秒 266毫秒/步 - 損失: 0.9974 - 稀疏類別準確度: 0.6104



1370/未知 369秒 266毫秒/步 - 損失: 0.9972 - 稀疏類別準確度: 0.6105



1371/未知 370秒 266毫秒/步 - 損失: 0.9971 - 稀疏類別準確度: 0.6105



1372/未知 370秒 266毫秒/步 - 損失: 0.9970 - 稀疏類別準確度: 0.6106



1373/未知 370秒 266毫秒/步 - 損失: 0.9968 - 稀疏類別準確度: 0.6106



1374/未知 371秒 266毫秒/步 - 損失: 0.9967 - 稀疏類別準確度: 0.6107



1375/未知 371秒 266毫秒/步 - 損失: 0.9965 - 稀疏類別準確度: 0.6107



1376/未知 371秒 266毫秒/步 - 損失: 0.9964 - 稀疏類別準確度: 0.6107



1377/未知 372秒 266毫秒/步 - 損失: 0.9963 - 稀疏類別準確度: 0.6108



1378/未知 372秒 266毫秒/步 - 損失: 0.9961 - 稀疏類別準確度: 0.6108



1379/未知 372秒 266毫秒/步 - 損失: 0.9960 - 稀疏類別準確度: 0.6109



1380/未知 372秒 266毫秒/步 - 損失: 0.9959 - 稀疏類別準確度: 0.6109



1381/未知 373秒 266毫秒/步 - 損失: 0.9957 - 稀疏類別準確度: 0.6110



1382/未知 373秒 266毫秒/步 - 損失: 0.9956 - 稀疏類別準確度: 0.6110



1383/未知 373秒 266毫秒/步 - 損失: 0.9954 - 稀疏類別準確度: 0.6111



1384/未知 374秒 266毫秒/步 - 損失: 0.9953 - 稀疏類別準確度: 0.6111



1385/未知 374秒 266毫秒/步 - 損失: 0.9952 - 稀疏類別準確度: 0.6111



1386/未知 374秒 266毫秒/步 - 損失: 0.9950 - 稀疏類別準確度: 0.6112



1387/未知 374秒 266毫秒/步 - 損失: 0.9949 - 稀疏類別準確度: 0.6112



1388/未知 375秒 266毫秒/步 - 損失: 0.9948 - 稀疏類別準確度: 0.6113



1389/未知 375秒 266毫秒/步 - 損失: 0.9946 - 稀疏類別準確度: 0.6113



1390/未知 375秒 266毫秒/步 - 損失: 0.9945 - 稀疏類別準確度: 0.6114



1391/未知 376秒 266毫秒/步 - 損失: 0.9943 - 稀疏類別準確度: 0.6114



1392/未知 376秒 266毫秒/步 - 損失: 0.9942 - 稀疏類別準確度: 0.6114



1393/未知 376秒 266毫秒/步 - 損失: 0.9941 - 稀疏類別準確度: 0.6115



1394/未知 377秒 266毫秒/步 - 損失: 0.9939 - 稀疏類別準確度: 0.6115



1395/未知 377秒 266毫秒/步 - 損失: 0.9938 - 稀疏類別準確度: 0.6116



1396/未知 377秒 266毫秒/步 - 損失: 0.9937 - 稀疏類別準確度: 0.6116



1397/未知 378秒 266毫秒/步 - 損失: 0.9935 - 稀疏類別準確度: 0.6117



1398/未知 378秒 266毫秒/步 - 損失: 0.9934 - 稀疏類別準確度: 0.6117



1399/未知 378秒 266毫秒/步 - 損失: 0.9933 - 稀疏類別準確度: 0.6117



1400/未知 378秒 266毫秒/步 - 損失: 0.9931 - 稀疏類別準確度: 0.6118



1401/未知 379秒 266毫秒/步 - 損失: 0.9930 - 稀疏類別準確度: 0.6118



1402/未知 379秒 266毫秒/步 - 損失: 0.9929 - 稀疏類別準確度: 0.6119



1403/未知 379秒 266毫秒/步 - 損失: 0.9927 - 稀疏類別準確度: 0.6119



1404/未知 379秒 266毫秒/步 - 損失: 0.9926 - 稀疏類別準確度: 0.6120



1405/未知 380秒 266毫秒/步 - 損失: 0.9925 - 稀疏類別準確度: 0.6120



1406/未知 380秒 266毫秒/步 - 損失: 0.9923 - 稀疏類別準確度: 0.6120



1407/未知 380秒 266毫秒/步 - 損失: 0.9922 - 稀疏類別準確度: 0.6121



1408/未知 380秒 266毫秒/步 - 損失: 0.9921 - 稀疏類別準確度: 0.6121



1409/未知 381秒 266毫秒/步 - 損失: 0.9919 - 稀疏類別準確度: 0.6122



1410/未知 381秒 266毫秒/步 - 損失: 0.9918 - 稀疏類別準確度: 0.6122



1411/未知 381秒 266毫秒/步 - 損失: 0.9917 - 稀疏類別準確度: 0.6122



1412/未知 382秒 266毫秒/步 - 損失: 0.9915 - 稀疏類別準確度: 0.6123



1413/未知 382秒 266毫秒/步 - 損失: 0.9914 - 稀疏類別準確度: 0.6123



1414/未知 382秒 266毫秒/步 - 損失: 0.9913 - 稀疏類別準確度: 0.6124



1415/未知 382秒 266毫秒/步 - 損失: 0.9911 - 稀疏類別準確度: 0.6124



1416/未知 383秒 266毫秒/步 - 損失: 0.9910 - 稀疏類別準確度: 0.6125



1417/未知 383秒 266毫秒/步 - 損失: 0.9909 - 稀疏類別準確度: 0.6125



1418/未知 383秒 266毫秒/步 - 損失: 0.9907 - 稀疏類別準確度: 0.6125



1419/未知 384秒 266毫秒/步 - 損失: 0.9906 - 稀疏類別準確度: 0.6126



1420/未知 384秒 267毫秒/步 - 損失: 0.9905 - 稀疏類別準確度: 0.6126



1421/未知 384秒 267毫秒/步 - 損失: 0.9903 - 稀疏類別準確度: 0.6127



1422/未知 385秒 267毫秒/步 - 損失: 0.9902 - 稀疏類別準確度: 0.6127



1423/未知 385秒 267毫秒/步 - 損失: 0.9901 - 稀疏類別準確度: 0.6127



1424/未知 386秒 267毫秒/步 - 損失: 0.9899 - 稀疏類別準確度: 0.6128



1425/未知 386秒 267毫秒/步 - 損失: 0.9898 - 稀疏類別準確度: 0.6128



1426/未知 386秒 267毫秒/步 - 損失: 0.9897 - 稀疏類別準確度: 0.6129



1427/未知 386秒 267毫秒/步 - 損失: 0.9895 - 稀疏類別準確度: 0.6129



1428/未知 387秒 267毫秒/步 - 損失: 0.9894 - 稀疏類別準確度: 0.6130



1429/未知 387秒 267毫秒/步 - 損失: 0.9893 - 稀疏類別準確度: 0.6130



1430/未知 387秒 267毫秒/步 - 損失: 0.9891 - 稀疏類別準確度: 0.6130



1431/未知 388秒 267毫秒/步 - 損失: 0.9890 - 稀疏類別準確度: 0.6131



1432/未知 388秒 267毫秒/步 - 損失: 0.9889 - 稀疏類別準確度: 0.6131



1433/未知 388秒 267毫秒/步 - 損失: 0.9888 - 稀疏類別準確度: 0.6132



1434/未知 388秒 267毫秒/步 - 損失: 0.9886 - 稀疏類別準確度: 0.6132



1435/未知 389秒 267毫秒/步 - 損失: 0.9885 - 稀疏類別準確度: 0.6132



1436/未知 389秒 267毫秒/步 - 損失: 0.9884 - 稀疏類別準確度: 0.6133



1437/未知 389秒 267毫秒/步 - 損失: 0.9882 - 稀疏類別準確度: 0.6133



1438/未知 390秒 267毫秒/步 - 損失: 0.9881 - 稀疏類別準確度: 0.6134



1439/未知 390秒 267毫秒/步 - 損失: 0.9880 - 稀疏類別準確度: 0.6134



1440/未知 390秒 267毫秒/步 - 損失: 0.9878 - 稀疏類別準確度: 0.6134



1441/未知 391秒 267毫秒/步 - 損失: 0.9877 - 稀疏類別準確度: 0.6135



1442/未知 391秒 267毫秒/步 - 損失: 0.9876 - 稀疏類別準確度: 0.6135



1443/未知 391秒 267毫秒/步 - 損失: 0.9875 - 稀疏類別準確度: 0.6136



1444/未知 391秒 267毫秒/步 - 損失: 0.9873 - 稀疏類別準確度: 0.6136



1445/未知 392秒 267毫秒/步 - 損失: 0.9872 - 稀疏類別準確度: 0.6137



1446/未知 392秒 267毫秒/步 - 損失: 0.9871 - 稀疏類別準確度: 0.6137



1447/未知 392秒 267毫秒/步 - 損失: 0.9869 - 稀疏類別準確度: 0.6137



1448/未知 393秒 267毫秒/步 - 損失: 0.9868 - 稀疏類別準確度: 0.6138



1449/未知 393秒 268毫秒/步 - 損失: 0.9867 - 稀疏類別準確度: 0.6138



1450/未知 394秒 268毫秒/步 - 損失: 0.9866 - 稀疏類別準確度: 0.6139



1451/未知 394秒 268毫秒/步 - 損失: 0.9864 - 稀疏類別準確度: 0.6139



1452/未知 394秒 268毫秒/步 - 損失: 0.9863 - 稀疏類別準確度: 0.6139



1453/未知 395秒 268毫秒/步 - 損失: 0.9862 - 稀疏類別準確度: 0.6140



1454/未知 395秒 268毫秒/步 - 損失: 0.9861 - 稀疏類別準確度: 0.6140



1455/未知 395秒 268毫秒/步 - 損失: 0.9859 - 稀疏類別準確度: 0.6141



1456/未知 396秒 268毫秒/步 - 損失: 0.9858 - 稀疏類別準確度: 0.6141



1457/未知 396秒 268毫秒/步 - 損失: 0.9857 - 稀疏類別準確度: 0.6141



1458/未知 396秒 268毫秒/步 - 損失: 0.9855 - 稀疏類別準確度: 0.6142



1459/未知 396秒 268毫秒/步 - 損失: 0.9854 - 稀疏類別準確度: 0.6142



1460/未知 397秒 268毫秒/步 - 損失: 0.9853 - 稀疏類別準確度: 0.6143



1461/未知 397秒 268毫秒/步 - 損失: 0.9852 - 稀疏類別準確度: 0.6143



1462/未知 397秒 268毫秒/步 - 損失: 0.9850 - 稀疏類別準確度: 0.6143



1463/未知 397秒 268毫秒/步 - 損失: 0.9849 - 稀疏類別準確度: 0.6144



1464/未知 398秒 268毫秒/步 - 損失: 0.9848 - 稀疏類別準確度: 0.6144



1465/未知 398秒 268毫秒/步 - 損失: 0.9847 - 稀疏類別準確度: 0.6145



1466/未知 398秒 268毫秒/步 - 損失: 0.9845 - 稀疏類別準確度: 0.6145



1467/未知 399秒 268毫秒/步 - 損失: 0.9844 - 稀疏類別準確度: 0.6145



1468/未知 399秒 268毫秒/步 - 損失: 0.9843 - 稀疏類別準確度: 0.6146



1469/未知 399秒 268毫秒/步 - 損失: 0.9842 - 稀疏類別準確度: 0.6146



1470/未知 399秒 268毫秒/步 - 損失: 0.9840 - 稀疏類別準確度: 0.6147



1471/未知 400秒 268毫秒/步 - 損失: 0.9839 - 稀疏類別準確度: 0.6147



1472/未知 400秒 268毫秒/步 - 損失: 0.9838 - 稀疏類別準確度: 0.6147



1473/未知 400秒 268毫秒/步 - 損失: 0.9837 - 稀疏類別準確度: 0.6148



1474/未知 401秒 268毫秒/步 - 損失: 0.9835 - 稀疏類別準確度: 0.6148



1475/未知 401秒 268毫秒/步 - 損失: 0.9834 - 稀疏類別準確度: 0.6149



1476/未知 401秒 268毫秒/步 - 損失: 0.9833 - 稀疏類別準確度: 0.6149



1477/未知 401秒 268毫秒/步 - 損失: 0.9832 - 稀疏類別準確度: 0.6149



1478/未知 402秒 268毫秒/步 - 損失: 0.9830 - 稀疏類別準確度: 0.6150



1479/未知 402秒 268毫秒/步 - 損失: 0.9829 - 稀疏類別準確度: 0.6150



1480/未知 402秒 268毫秒/步 - 損失: 0.9828 - 稀疏類別準確度: 0.6150



1481/未知 403秒 268毫秒/步 - 損失: 0.9827 - 稀疏類別準確度: 0.6151



1482/未知 403秒 268毫秒/步 - 損失: 0.9825 - 稀疏類別準確度: 0.6151



1483/未知 403秒 268毫秒/步 - 損失: 0.9824 - 稀疏類別準確度: 0.6152



1484/未知 404秒 268毫秒/步 - 損失: 0.9823 - 稀疏類別準確度: 0.6152



1485/未知 404秒 268毫秒/步 - 損失: 0.9822 - 稀疏類別準確度: 0.6152



1486/未知 404秒 268毫秒/步 - 損失: 0.9820 - 稀疏類別準確度: 0.6153



1487/未知 404秒 268毫秒/步 - 損失: 0.9819 - 稀疏類別準確度: 0.6153



1488/未知 405秒 268毫秒/步 - 損失: 0.9818 - 稀疏類別準確度: 0.6154



1489/未知 405秒 268毫秒/步 - 損失: 0.9817 - 稀疏類別準確度: 0.6154



1490/未知 405秒 268毫秒/步 - 損失: 0.9815 - 稀疏類別準確度: 0.6154



1491/未知 406秒 268毫秒/步 - 損失: 0.9814 - 稀疏類別準確度: 0.6155



1492/未知 406秒 268毫秒/步 - 損失: 0.9813 - 稀疏類別準確度: 0.6155



1493/未知 406秒 268毫秒/步 - 損失: 0.9812 - 稀疏類別準確度: 0.6156



1494/未知 406秒 268毫秒/步 - 損失: 0.9810 - 稀疏類別準確度: 0.6156



1495/未知 407秒 268毫秒/步 - 損失: 0.9809 - 稀疏類別準確度: 0.6156



1496/未知 407秒 268毫秒/步 - 損失: 0.9808 - 稀疏類別準確度: 0.6157



1497/未知 407秒 268毫秒/步 - 損失: 0.9807 - 稀疏類別準確度: 0.6157



1498/未知 408秒 268毫秒/步 - 損失: 0.9806 - 稀疏類別準確度: 0.6157



1499/未知 408秒 268毫秒/步 - 損失: 0.9804 - 稀疏類別準確度: 0.6158



1500/未知 408秒 268毫秒/步 - 損失: 0.9803 - 稀疏類別準確度: 0.6158



1501/未知 408秒 268毫秒/步 - 損失: 0.9802 - 稀疏類別準確度: 0.6159



1502/未知 409秒 268毫秒/步 - 損失: 0.9801 - 稀疏類別準確度: 0.6159



1503/未知 409秒 268毫秒/步 - 損失: 0.9800 - 稀疏類別準確度: 0.6159



1504/未知 409秒 268毫秒/步 - 損失: 0.9798 - 稀疏類別準確度: 0.6160



1505/未知 410秒 268毫秒/步 - 損失: 0.9797 - 稀疏類別準確度: 0.6160



1506/未知 410秒 269毫秒/步 - 損失: 0.9796 - 稀疏類別準確度: 0.6161



1507/未知 410秒 269毫秒/步 - 損失: 0.9795 - 稀疏類別準確度: 0.6161



1508/未知 411秒 269毫秒/步 - 損失: 0.9793 - 稀疏類別準確度: 0.6161



1509/未知 411秒 269毫秒/步 - 損失: 0.9792 - 稀疏類別準確度: 0.6162



1510/未知 411秒 269毫秒/步 - 損失: 0.9791 - 稀疏類別準確度: 0.6162



1511/未知 411秒 269毫秒/步 - 損失: 0.9790 - 稀疏類別準確度: 0.6162



1512/未知 412秒 269毫秒/步 - 損失: 0.9789 - 稀疏類別準確度: 0.6163



1513/未知 412秒 269毫秒/步 - 損失: 0.9787 - 稀疏類別準確度: 0.6163



1514/未知 412秒 269毫秒/步 - 損失: 0.9786 - 稀疏類別準確度: 0.6164



1515/未知 413秒 269毫秒/步 - 損失: 0.9785 - 稀疏類別準確度: 0.6164



1516/未知 413秒 269毫秒/步 - 損失: 0.9784 - 稀疏類別準確度: 0.6164



1517/未知 413秒 269毫秒/步 - 損失: 0.9783 - 稀疏類別準確度: 0.6165



1518/未知 413秒 269毫秒/步 - 損失: 0.9781 - 稀疏類別準確度: 0.6165



1519/未知 414秒 269毫秒/步 - 損失: 0.9780 - 稀疏類別準確度: 0.6166



1520/未知 414秒 269毫秒/步 - 損失: 0.9779 - 稀疏類別準確度: 0.6166



1521/未知 414秒 269毫秒/步 - 損失: 0.9778 - 稀疏類別準確度: 0.6166



1522/未知 415秒 269毫秒/步 - 損失: 0.9777 - 稀疏類別準確度: 0.6167



1523/未知 415秒 269毫秒/步 - 損失: 0.9775 - 稀疏類別準確度: 0.6167



1524/未知 415秒 269毫秒/步 - 損失: 0.9774 - 稀疏類別準確度: 0.6167



1525/未知 415秒 269毫秒/步 - 損失: 0.9773 - 稀疏類別準確度: 0.6168



1526/未知 416秒 269毫秒/步 - 損失: 0.9772 - 稀疏類別準確度: 0.6168



1527/未知 416秒 269毫秒/步 - 損失: 0.9771 - 稀疏類別準確度: 0.6169



1528/未知 416秒 269毫秒/步 - 損失: 0.9769 - 稀疏類別準確度: 0.6169



1529/未知 417秒 269毫秒/步 - 損失: 0.9768 - 稀疏類別準確度: 0.6169



1530/未知 417秒 269毫秒/步 - 損失: 0.9767 - 稀疏類別準確度: 0.6170



1531/未知 417秒 269毫秒/步 - 損失: 0.9766 - 稀疏類別準確度: 0.6170



1532/未知 417秒 269毫秒/步 - 損失: 0.9765 - 稀疏類別準確度: 0.6170



1533/未知 418秒 269毫秒/步 - 損失: 0.9764 - 稀疏類別準確度: 0.6171



1534/未知 418秒 269毫秒/步 - 損失: 0.9762 - 稀疏類別準確度: 0.6171



1535/未知 418秒 269毫秒/步 - 損失: 0.9761 - 稀疏類別準確度: 0.6172



1536/未知 418秒 269毫秒/步 - 損失: 0.9760 - 稀疏類別準確度: 0.6172



1537/未知 419秒 269毫秒/步 - 損失: 0.9759 - 稀疏類別準確度: 0.6172



1538/未知 419秒 269毫秒/步 - 損失: 0.9758 - 稀疏類別準確度: 0.6173



1539/未知 419秒 269毫秒/步 - 損失: 0.9756 - 稀疏類別準確度: 0.6173



1540/未知 420秒 269毫秒/步 - 損失: 0.9755 - 稀疏類別準確度: 0.6173



1541/未知 420秒 269毫秒/步 - 損失: 0.9754 - 稀疏類別準確度: 0.6174



1542/未知 420秒 269毫秒/步 - 損失: 0.9753 - 稀疏類別準確度: 0.6174



1543/未知 420秒 269毫秒/步 - 損失: 0.9752 - 稀疏類別準確度: 0.6174



1544/未知 421秒 269毫秒/步 - 損失: 0.9751 - 稀疏類別準確度: 0.6175



1545/未知 421秒 269毫秒/步 - 損失: 0.9749 - 稀疏類別準確度: 0.6175



1546/未知 421秒 269毫秒/步 - 損失: 0.9748 - 稀疏類別準確度: 0.6176



1547/未知 422秒 269毫秒/步 - 損失: 0.9747 - 稀疏類別準確度: 0.6176



1548/未知 422秒 269毫秒/步 - 損失: 0.9746 - 稀疏類別準確度: 0.6176



1549/未知 422秒 269毫秒/步 - 損失: 0.9745 - 稀疏類別準確度: 0.6177



1550/未知 422秒 269毫秒/步 - 損失: 0.9744 - 稀疏類別準確度: 0.6177



1551/未知 423秒 269毫秒/步 - 損失: 0.9742 - 稀疏類別準確度: 0.6177



1552/未知 423秒 269毫秒/步 - 損失: 0.9741 - 稀疏類別準確度: 0.6178



1553/未知 423秒 269毫秒/步 - 損失: 0.9740 - 稀疏類別準確度: 0.6178



1554/未知 424秒 269毫秒/步 - 損失: 0.9739 - 稀疏類別準確度: 0.6179



1555/未知 424秒 269毫秒/步 - 損失: 0.9738 - 稀疏類別準確度: 0.6179



1556/未知 424秒 269毫秒/步 - 損失: 0.9737 - 稀疏類別準確度: 0.6179



1557/未知 424秒 269毫秒/步 - 損失: 0.9736 - 稀疏類別準確度: 0.6180



1558/未知 425秒 269毫秒/步 - 損失: 0.9734 - 稀疏類別準確度: 0.6180



1559/未知 425秒 269毫秒/步 - 損失: 0.9733 - 稀疏類別準確度: 0.6180



1560/未知 425秒 269毫秒/步 - 損失: 0.9732 - 稀疏類別準確度: 0.6181



1561/未知 426秒 269毫秒/步 - 損失: 0.9731 - 稀疏類別準確度: 0.6181



1562/未知 426秒 269毫秒/步 - 損失: 0.9730 - 稀疏類別準確度: 0.6181



1563/未知 426秒 269毫秒/步 - 損失: 0.9729 - 稀疏類別準確度: 0.6182



1564/未知 427秒 269毫秒/步 - 損失: 0.9727 - 稀疏類別準確度: 0.6182



1565/未知 427秒 269毫秒/步 - 損失: 0.9726 - 稀疏類別準確度: 0.6182



1566/未知 427秒 269毫秒/步 - 損失: 0.9725 - 稀疏類別準確度: 0.6183



1567/未知 427秒 269毫秒/步 - 損失: 0.9724 - 稀疏類別準確度: 0.6183



1568/未知 428秒 269毫秒/步 - 損失: 0.9723 - 稀疏類別準確度: 0.6184



1569/未知 428秒 269毫秒/步 - 損失: 0.9722 - 稀疏類別準確度: 0.6184



1570/未知 428秒 269毫秒/步 - 損失: 0.9721 - 稀疏類別準確度: 0.6184



1571/未知 428秒 269毫秒/步 - 損失: 0.9719 - 稀疏類別準確度: 0.6185



1572/未知 429秒 269毫秒/步 - 損失: 0.9718 - 稀疏類別準確度: 0.6185



1573/未知 429秒 269毫秒/步 - 損失: 0.9717 - 稀疏類別準確度: 0.6185



1574/未知 429秒 269毫秒/步 - 損失: 0.9716 - 稀疏類別準確度: 0.6186



1575/未知 430秒 269毫秒/步 - 損失: 0.9715 - 稀疏類別準確度: 0.6186



1576/未知 430秒 269毫秒/步 - 損失: 0.9714 - 稀疏類別準確度: 0.6186



1577/未知 430秒 269毫秒/步 - 損失: 0.9713 - 稀疏類別準確度: 0.6187



1578/未知 430秒 269毫秒/步 - 損失: 0.9712 - 稀疏類別準確度: 0.6187



1579/未知 431秒 269毫秒/步 - 損失: 0.9710 - 稀疏類別準確度: 0.6188



1580/未知 431秒 269毫秒/步 - 損失: 0.9709 - 稀疏類別準確度: 0.6188



1581/未知 431秒 269毫秒/步 - 損失: 0.9708 - 稀疏類別準確度: 0.6188



1582/未知 432秒 269毫秒/步 - 損失: 0.9707 - 稀疏類別準確度: 0.6189



1583/未知 432秒 269毫秒/步 - 損失: 0.9706 - 稀疏類別準確度: 0.6189



1584/未知 432秒 269毫秒/步 - 損失: 0.9705 - 稀疏類別準確度: 0.6189



1585/未知 433秒 269毫秒/步 - 損失: 0.9704 - 稀疏類別準確度: 0.6190



1586/未知 433秒 269毫秒/步 - 損失: 0.9702 - 稀疏類別準確度: 0.6190



1587/未知 433秒 269毫秒/步 - 損失: 0.9701 - 稀疏類別準確度: 0.6190



1588/未知 433秒 269毫秒/步 - 損失: 0.9700 - 稀疏類別準確度: 0.6191



1589/未知 434秒 269毫秒/步 - 損失: 0.9699 - 稀疏類別準確度: 0.6191



1590/未知 434秒 269毫秒/步 - 損失: 0.9698 - 稀疏類別準確度: 0.6191



1591/未知 434秒 269毫秒/步 - 損失: 0.9697 - 稀疏類別準確度: 0.6192



1592/未知 435秒 270毫秒/步 - 損失: 0.9696 - 稀疏類別準確度: 0.6192



1593/未知 435秒 270毫秒/步 - 損失: 0.9695 - 稀疏類別準確度: 0.6192



1594/未知 435秒 270毫秒/步 - 損失: 0.9694 - 稀疏類別準確度: 0.6193



1595/未知 435秒 270毫秒/步 - 損失: 0.9692 - 稀疏類別準確度: 0.6193



1596/未知 436秒 270毫秒/步 - 損失: 0.9691 - 稀疏類別準確度: 0.6194



1597/未知 436秒 270毫秒/步 - 損失: 0.9690 - 稀疏類別準確度: 0.6194



1598/未知 436秒 270毫秒/步 - 損失: 0.9689 - 稀疏類別準確度: 0.6194



1599/未知 437秒 270毫秒/步 - 損失: 0.9688 - 稀疏類別準確度: 0.6195



1600/未知 437秒 270毫秒/步 - 損失: 0.9687 - 稀疏類別準確度: 0.6195



1601/未知 437秒 270毫秒/步 - 損失: 0.9686 - 稀疏類別準確度: 0.6195



1602/未知 437秒 270毫秒/步 - 損失: 0.9685 - 稀疏類別準確度: 0.6196



1603/未知 438秒 270毫秒/步 - 損失: 0.9684 - 稀疏類別準確度: 0.6196



1604/未知 438秒 270毫秒/步 - 損失: 0.9682 - 稀疏類別準確度: 0.6196



1605/未知 438秒 270毫秒/步 - 損失: 0.9681 - 稀疏類別準確度: 0.6197



1606/未知 439秒 270毫秒/步 - 損失: 0.9680 - 稀疏類別準確度: 0.6197



1607/未知 439秒 270毫秒/步 - 損失: 0.9679 - 稀疏類別準確度: 0.6197



1608/未知 439秒 270毫秒/步 - 損失: 0.9678 - 稀疏類別準確度: 0.6198



1609/未知 439秒 270毫秒/步 - 損失: 0.9677 - 稀疏類別準確度: 0.6198



1610/未知 440秒 270毫秒/步 - 損失: 0.9676 - 稀疏類別準確度: 0.6198



1611/未知 440秒 270毫秒/步 - 損失: 0.9675 - 稀疏類別準確度: 0.6199



1612/未知 440秒 270毫秒/步 - 損失: 0.9674 - 稀疏類別準確度: 0.6199



1613/未知 441秒 270毫秒/步 - 損失: 0.9673 - 稀疏類別準確度: 0.6199



1614/未知 441秒 270毫秒/步 - 損失: 0.9671 - 稀疏類別準確度: 0.6200



1615/未知 441秒 270毫秒/步 - 損失: 0.9670 - 稀疏類別準確度: 0.6200



1616/未知 442秒 270毫秒/步 - 損失: 0.9669 - 稀疏類別準確度: 0.6200



1617/未知 442秒 270毫秒/步 - 損失: 0.9668 - 稀疏類別準確度: 0.6201



1618/未知 442秒 270毫秒/步 - 損失: 0.9667 - 稀疏類別準確度: 0.6201



1619/未知 442秒 270毫秒/步 - 損失: 0.9666 - 稀疏類別準確度: 0.6202



1620/未知 443秒 270毫秒/步 - 損失: 0.9665 - 稀疏類別準確度: 0.6202



1621/未知 443秒 270毫秒/步 - 損失: 0.9664 - 稀疏類別準確度: 0.6202



1622/未知 443秒 270毫秒/步 - 損失: 0.9663 - 稀疏類別準確度: 0.6203



1623/未知 444秒 270毫秒/步 - 損失: 0.9662 - 稀疏類別準確度: 0.6203



1624/未知 444秒 270毫秒/步 - 損失: 0.9661 - 稀疏類別準確度: 0.6203



1625/未知 444秒 270毫秒/步 - 損失: 0.9659 - 稀疏類別準確度: 0.6204



1626/未知 445秒 270毫秒/步 - 損失: 0.9658 - 稀疏類別準確度: 0.6204



1627/未知 445秒 270毫秒/步 - 損失: 0.9657 - 稀疏類別準確度: 0.6204



1628/未知 445秒 270毫秒/步 - 損失: 0.9656 - 稀疏類別準確度: 0.6205



1629/未知 446秒 270毫秒/步 - 損失: 0.9655 - 稀疏類別準確度: 0.6205



1630/未知 446秒 270毫秒/步 - 損失: 0.9654 - 稀疏類別準確度: 0.6205



1631/未知 446秒 270毫秒/步 - 損失: 0.9653 - 稀疏類別準確度: 0.6206



1632/未知 447秒 270毫秒/步 - 損失: 0.9652 - 稀疏類別準確度: 0.6206



1633/未知 447秒 270毫秒/步 - 損失: 0.9651 - 稀疏類別準確度: 0.6206



1634/未知 447秒 270毫秒/步 - 損失: 0.9650 - 稀疏類別準確度: 0.6207



1635/未知 448秒 271毫秒/步 - 損失: 0.9649 - 稀疏類別準確度: 0.6207



1636/未知 448秒 271毫秒/步 - 損失: 0.9648 - 稀疏類別準確度: 0.6207



1637/未知 448秒 271毫秒/步 - 損失: 0.9646 - 稀疏類別準確度: 0.6208



1638/未知 449秒 271毫秒/步 - 損失: 0.9645 - 稀疏類別準確度: 0.6208



1639/未知 449秒 271毫秒/步 - 損失: 0.9644 - 稀疏類別準確度: 0.6208



1640/未知 449秒 271毫秒/步 - 損失: 0.9643 - 稀疏類別準確度: 0.6209



1641/未知 450秒 271毫秒/步 - 損失: 0.9642 - 稀疏類別準確度: 0.6209



1642/未知 450秒 271毫秒/步 - 損失: 0.9641 - 稀疏類別準確度: 0.6209



1643/未知 450秒 271毫秒/步 - 損失: 0.9640 - 稀疏類別準確度: 0.6210



1644/未知 450秒 271毫秒/步 - 損失: 0.9639 - 稀疏類別準確度: 0.6210



1645/未知 451秒 271毫秒/步 - 損失: 0.9638 - 稀疏類別準確度: 0.6210



1646/未知 451秒 271毫秒/步 - 損失: 0.9637 - 稀疏類別準確度: 0.6211



1647/未知 451秒 271毫秒/步 - 損失: 0.9636 - 稀疏類別準確度: 0.6211



1648/未知 452秒 271毫秒/步 - 損失: 0.9635 - 稀疏類別準確度: 0.6211



1649/未知 452秒 271毫秒/步 - 損失: 0.9634 - 稀疏類別準確度: 0.6212



1650/未知 452秒 271毫秒/步 - 損失: 0.9633 - 稀疏類別準確度: 0.6212



1651/未知 452秒 271毫秒/步 - 損失: 0.9632 - 稀疏類別準確度: 0.6212



1652/未知 453秒 271毫秒/步 - 損失: 0.9631 - 稀疏類別準確度: 0.6213



1653/未知 453秒 271毫秒/步 - 損失: 0.9629 - 稀疏類別準確度: 0.6213



1654/未知 453秒 271毫秒/步 - 損失: 0.9628 - 稀疏類別準確度: 0.6213



1655/未知 454秒 271毫秒/步 - 損失: 0.9627 - 稀疏類別準確度: 0.6214



1656/未知 454秒 271毫秒/步 - 損失: 0.9626 - 稀疏類別準確度: 0.6214



1657/未知 454秒 271毫秒/步 - 損失: 0.9625 - 稀疏類別準確度: 0.6214



1658/未知 455秒 271毫秒/步 - 損失: 0.9624 - 稀疏類別準確度: 0.6215



1659/未知 455秒 271毫秒/步 - 損失: 0.9623 - 稀疏類別準確度: 0.6215



1660/未知 455秒 271毫秒/步 - 損失: 0.9622 - 稀疏類別準確度: 0.6215



1661/未知 455秒 271毫秒/步 - 損失: 0.9621 - 稀疏類別準確度: 0.6216



1662/未知 456秒 271毫秒/步 - 損失: 0.9620 - 稀疏類別準確度: 0.6216



1663/未知 456秒 271毫秒/步 - 損失: 0.9619 - 稀疏類別準確度: 0.6216



1664/未知 456秒 271毫秒/步 - 損失: 0.9618 - 稀疏類別準確度: 0.6217



1665/未知 457秒 271毫秒/步 - 損失: 0.9617 - 稀疏類別準確度: 0.6217



1666/未知 457秒 271毫秒/步 - 損失: 0.9616 - 稀疏類別準確度: 0.6217



1667/未知 457秒 271毫秒/步 - 損失: 0.9615 - 稀疏類別準確度: 0.6218



1668/未知 457秒 271毫秒/步 - 損失: 0.9614 - 稀疏類別準確度: 0.6218



1669/未知 458秒 271毫秒/步 - 損失: 0.9613 - 稀疏類別準確度: 0.6218



1670/未知 458秒 271毫秒/步 - 損失: 0.9612 - 稀疏類別準確度: 0.6219



1671/未知 458秒 271毫秒/步 - 損失: 0.9611 - 稀疏類別準確度: 0.6219



1672/未知 459秒 271毫秒/步 - 損失: 0.9610 - 稀疏類別準確度: 0.6219



1673/未知 459秒 271毫秒/步 - 損失: 0.9609 - 稀疏類別準確度: 0.6220



1674/未知 459秒 271毫秒/步 - 損失: 0.9607 - 稀疏類別準確度: 0.6220



1675/未知 460秒 271毫秒/步 - 損失: 0.9606 - 稀疏類別準確度: 0.6220



1676/未知 460秒 271毫秒/步 - 損失: 0.9605 - 稀疏類別準確度: 0.6221



1677/未知 460秒 271毫秒/步 - 損失: 0.9604 - 稀疏類別準確度: 0.6221



1678/未知 460秒 271毫秒/步 - 損失: 0.9603 - 稀疏類別準確度: 0.6221



1679/未知 461秒 271毫秒/步 - 損失: 0.9602 - 稀疏類別準確度: 0.6222



1680/未知 461秒 271毫秒/步 - 損失: 0.9601 - 稀疏類別準確度: 0.6222



1681/未知 461秒 271毫秒/步 - 損失: 0.9600 - 稀疏類別準確度: 0.6222



1682/未知 462秒 271毫秒/步 - 損失: 0.9599 - 稀疏類別準確度: 0.6223



1683/未知 462秒 271毫秒/步 - 損失: 0.9598 - 稀疏類別準確度: 0.6223



1684/未知 462秒 271毫秒/步 - 損失: 0.9597 - 稀疏類別準確度: 0.6223



1685/未知 462秒 271毫秒/步 - 損失: 0.9596 - 稀疏類別準確度: 0.6224



1686/未知 463秒 271毫秒/步 - 損失: 0.9595 - 稀疏類別準確度: 0.6224



1687/未知 463秒 271毫秒/步 - 損失: 0.9594 - 稀疏類別準確度: 0.6224



1688/未知 463秒 271毫秒/步 - 損失: 0.9593 - 稀疏類別準確度: 0.6224



1689/未知 463秒 271毫秒/步 - 損失: 0.9592 - 稀疏類別準確度: 0.6225



1690/未知 464秒 271毫秒/步 - 損失: 0.9591 - 稀疏類別準確度: 0.6225



1691/未知 464秒 271毫秒/步 - 損失: 0.9590 - 稀疏類別準確度: 0.6225



1692/未知 464秒 271毫秒/步 - 損失: 0.9589 - 稀疏類別準確度: 0.6226



1693/未知 464秒 271毫秒/步 - 損失: 0.9588 - 稀疏類別準確度: 0.6226



1694/未知 465秒 271毫秒/步 - 損失: 0.9587 - 稀疏類別準確度: 0.6226



1695/未知 465秒 271毫秒/步 - 損失: 0.9586 - 稀疏類別準確度: 0.6227



1696/未知 465秒 271毫秒/步 - 損失: 0.9585 - 稀疏類別準確度: 0.6227



1697/未知 465秒 271毫秒/步 - 損失: 0.9584 - 稀疏類別準確度: 0.6227



1698/未知 466秒 271毫秒/步 - 損失: 0.9583 - 稀疏類別準確度: 0.6228



1699/未知 466秒 271毫秒/步 - 損失: 0.9582 - 稀疏類別準確度: 0.6228



1700/未知 466秒 271毫秒/步 - 損失: 0.9581 - 稀疏類別準確度: 0.6228



1701/未知 466秒 271毫秒/步 - 損失: 0.9580 - 稀疏類別準確度: 0.6229



1702/未知 467秒 271毫秒/步 - 損失: 0.9579 - 稀疏類別準確度: 0.6229



1703/未知 467秒 271毫秒/步 - 損失: 0.9578 - 稀疏類別準確度: 0.6229



1704/未知 467秒 271毫秒/步 - 損失: 0.9577 - 稀疏類別準確度: 0.6230



1705/未知 468秒 271毫秒/步 - 損失: 0.9576 - 稀疏類別準確度: 0.6230



1706/未知 468秒 271毫秒/步 - 損失: 0.9575 - 稀疏類別準確度: 0.6230



1707/未知 468秒 271毫秒/步 - 損失: 0.9574 - 稀疏類別準確度: 0.6231



1708/未知 469秒 271毫秒/步 - 損失: 0.9573 - 稀疏類別準確度: 0.6231



1709/未知 469秒 271毫秒/步 - 損失: 0.9572 - 稀疏類別準確度: 0.6231



1710/未知 469秒 271毫秒/步 - 損失: 0.9571 - 稀疏類別準確度: 0.6232



1711/未知 470秒 271毫秒/步 - 損失: 0.9570 - 稀疏類別準確度: 0.6232



1712/未知 470秒 271毫秒/步 - 損失: 0.9569 - 稀疏類別準確度: 0.6232



1713/未知 470秒 271毫秒/步 - 損失: 0.9568 - 稀疏類別準確度: 0.6232



1714/未知 470秒 271毫秒/步 - 損失: 0.9567 - 稀疏類別準確度: 0.6233



1715/未知 471秒 271毫秒/步 - 損失: 0.9566 - 稀疏類別準確度: 0.6233



1716/未知 471秒 271毫秒/步 - 損失: 0.9565 - 稀疏類別準確度: 0.6233



1717/未知 471秒 271毫秒/步 - 損失: 0.9564 - 稀疏類別準確度: 0.6234



1718/未知 471秒 271毫秒/步 - 損失: 0.9563 - 稀疏類別準確度: 0.6234



1719/Unknown 472秒 271毫秒/步 - 損失: 0.9562 - 稀疏類別準確度: 0.6234



1720/Unknown 472秒 271毫秒/步 - 損失: 0.9561 - 稀疏類別準確度: 0.6235



1721/Unknown 472秒 271毫秒/步 - 損失: 0.9560 - 稀疏類別準確度: 0.6235



1722/Unknown 472秒 271毫秒/步 - 損失: 0.9559 - 稀疏類別準確度: 0.6235



1723/Unknown 473秒 271毫秒/步 - 損失: 0.9558 - 稀疏類別準確度: 0.6236



1724/Unknown 473秒 271毫秒/步 - 損失: 0.9557 - 稀疏類別準確度: 0.6236



1725/Unknown 473秒 271毫秒/步 - 損失: 0.9556 - 稀疏類別準確度: 0.6236



1726/Unknown 473秒 271毫秒/步 - 損失: 0.9555 - 稀疏類別準確度: 0.6237



1727/Unknown 474秒 271毫秒/步 - 損失: 0.9554 - 稀疏類別準確度: 0.6237



1728/Unknown 474秒 271毫秒/步 - 損失: 0.9553 - 稀疏類別準確度: 0.6237



1729/Unknown 474秒 271毫秒/步 - 損失: 0.9552 - 稀疏類別準確度: 0.6237



1730/Unknown 474秒 271毫秒/步 - 損失: 0.9551 - 稀疏類別準確度: 0.6238



1731/Unknown 475秒 271毫秒/步 - 損失: 0.9550 - 稀疏類別準確度: 0.6238



1732/Unknown 475秒 271毫秒/步 - 損失: 0.9549 - 稀疏類別準確度: 0.6238



1733/Unknown 476秒 271毫秒/步 - 損失: 0.9548 - 稀疏類別準確度: 0.6239



1734/Unknown 476秒 271毫秒/步 - 損失: 0.9547 - 稀疏類別準確度: 0.6239



1735/Unknown 476秒 271毫秒/步 - 損失: 0.9546 - 稀疏類別準確度: 0.6239



1736/Unknown 477秒 271毫秒/步 - 損失: 0.9545 - 稀疏類別準確度: 0.6240



1737/Unknown 477秒 271毫秒/步 - 損失: 0.9544 - 稀疏類別準確度: 0.6240



1738/Unknown 477秒 271毫秒/步 - 損失: 0.9543 - 稀疏類別準確度: 0.6240



1739/Unknown 478秒 272毫秒/步 - 損失: 0.9542 - 稀疏類別準確度: 0.6241



1740/Unknown 478秒 272毫秒/步 - 損失: 0.9541 - 稀疏類別準確度: 0.6241



1741/Unknown 478秒 272毫秒/步 - 損失: 0.9540 - 稀疏類別準確度: 0.6241



1742/Unknown 479秒 272毫秒/步 - 損失: 0.9539 - 稀疏類別準確度: 0.6242



1743/Unknown 479秒 272毫秒/步 - 損失: 0.9538 - 稀疏類別準確度: 0.6242



1744/Unknown 479秒 272毫秒/步 - 損失: 0.9537 - 稀疏類別準確度: 0.6242



1745/Unknown 480秒 272毫秒/步 - 損失: 0.9536 - 稀疏類別準確度: 0.6242



1746/Unknown 480秒 272毫秒/步 - 損失: 0.9535 - 稀疏類別準確度: 0.6243



1747/Unknown 480秒 272毫秒/步 - 損失: 0.9534 - 稀疏類別準確度: 0.6243



1748/Unknown 481秒 272毫秒/步 - 損失: 0.9533 - 稀疏類別準確度: 0.6243



1749/Unknown 481秒 272毫秒/步 - 損失: 0.9532 - 稀疏類別準確度: 0.6244



1750/Unknown 481秒 272毫秒/步 - 損失: 0.9531 - 稀疏類別準確度: 0.6244



1751/Unknown 481秒 272毫秒/步 - 損失: 0.9530 - 稀疏類別準確度: 0.6244



1752/Unknown 482秒 272毫秒/步 - 損失: 0.9529 - 稀疏類別準確度: 0.6245



1753/Unknown 482秒 272毫秒/步 - 損失: 0.9528 - 稀疏類別準確度: 0.6245



1754/Unknown 482秒 272毫秒/步 - 損失: 0.9527 - 稀疏類別準確度: 0.6245



1755/Unknown 483秒 272毫秒/步 - 損失: 0.9526 - 稀疏類別準確度: 0.6246



1756/Unknown 483秒 272毫秒/步 - 損失: 0.9525 - 稀疏類別準確度: 0.6246



1757/Unknown 483秒 272毫秒/步 - 損失: 0.9524 - 稀疏類別準確度: 0.6246



1758/Unknown 484秒 272毫秒/步 - 損失: 0.9523 - 稀疏類別準確度: 0.6246



1759/Unknown 484秒 272毫秒/步 - 損失: 0.9522 - 稀疏類別準確度: 0.6247



1760/Unknown 484秒 272毫秒/步 - 損失: 0.9521 - 稀疏類別準確度: 0.6247



1761/Unknown 484秒 272毫秒/步 - 損失: 0.9520 - 稀疏類別準確度: 0.6247



1762/Unknown 485秒 272毫秒/步 - 損失: 0.9519 - 稀疏類別準確度: 0.6248



1763/Unknown 485秒 272毫秒/步 - 損失: 0.9519 - 稀疏類別準確度: 0.6248



1764/Unknown 485秒 272毫秒/步 - 損失: 0.9518 - 稀疏類別準確度: 0.6248



1765/Unknown 486秒 272毫秒/步 - 損失: 0.9517 - 稀疏類別準確度: 0.6249



1766/Unknown 486秒 272毫秒/步 - 損失: 0.9516 - 稀疏類別準確度: 0.6249



1767/Unknown 486秒 272毫秒/步 - 損失: 0.9515 - 稀疏類別準確度: 0.6249



1768/Unknown 487秒 272毫秒/步 - 損失: 0.9514 - 稀疏類別準確度: 0.6249



1769/Unknown 487秒 272毫秒/步 - 損失: 0.9513 - 稀疏類別準確度: 0.6250



1770/Unknown 488秒 272毫秒/步 - 損失: 0.9512 - 稀疏類別準確度: 0.6250



1771/Unknown 488秒 272毫秒/步 - 損失: 0.9511 - 稀疏類別準確度: 0.6250



1772/Unknown 488秒 272毫秒/步 - 損失: 0.9510 - 稀疏類別準確度: 0.6251



1773/Unknown 489秒 272毫秒/步 - 損失: 0.9509 - 稀疏類別準確度: 0.6251



1774/Unknown 489秒 273毫秒/步 - 損失: 0.9508 - 稀疏類別準確度: 0.6251



1775/Unknown 489秒 273毫秒/步 - 損失: 0.9507 - 稀疏類別準確度: 0.6252



1776/Unknown 490秒 273毫秒/步 - 損失: 0.9506 - 稀疏類別準確度: 0.6252



1777/Unknown 490秒 273毫秒/步 - 損失: 0.9505 - 稀疏類別準確度: 0.6252



1778/Unknown 490秒 273毫秒/步 - 損失: 0.9504 - 稀疏類別準確度: 0.6252



1779/Unknown 491秒 273毫秒/步 - 損失: 0.9503 - 稀疏類別準確度: 0.6253



1780/Unknown 491秒 273毫秒/步 - 損失: 0.9502 - 稀疏類別準確度: 0.6253



1781/Unknown 492秒 273毫秒/步 - 損失: 0.9501 - 稀疏類別準確度: 0.6253



1782/Unknown 492秒 273毫秒/步 - 損失: 0.9500 - 稀疏類別準確度: 0.6254



1783/Unknown 492秒 273毫秒/步 - 損失: 0.9499 - 稀疏類別準確度: 0.6254



1784/Unknown 493秒 273毫秒/步 - 損失: 0.9498 - 稀疏類別準確度: 0.6254



1785/Unknown 493秒 273毫秒/步 - 損失: 0.9498 - 稀疏類別準確度: 0.6255



1786/Unknown 493秒 273毫秒/步 - 損失: 0.9497 - 稀疏類別準確度: 0.6255



1787/Unknown 494秒 273毫秒/步 - 損失: 0.9496 - 稀疏類別準確度: 0.6255



1788/Unknown 494秒 273毫秒/步 - 損失: 0.9495 - 稀疏類別準確度: 0.6255



1789/Unknown 494秒 273毫秒/步 - 損失: 0.9494 - 稀疏類別準確度: 0.6256



1790/Unknown 495秒 273毫秒/步 - 損失: 0.9493 - 稀疏類別準確度: 0.6256



1791/Unknown 495秒 273毫秒/步 - 損失: 0.9492 - 稀疏類別準確度: 0.6256



1792/Unknown 495秒 273毫秒/步 - 損失: 0.9491 - 稀疏類別準確度: 0.6257



1793/Unknown 496秒 273毫秒/步 - 損失: 0.9490 - 稀疏類別準確度: 0.6257



1794/Unknown 496秒 273毫秒/步 - 損失: 0.9489 - 稀疏類別準確度: 0.6257



1795/Unknown 496秒 273毫秒/步 - 損失: 0.9488 - 稀疏類別準確度: 0.6258



1796/Unknown 497秒 273毫秒/步 - 損失: 0.9487 - 稀疏類別準確度: 0.6258



1797/Unknown 497秒 274毫秒/步 - 損失: 0.9486 - 稀疏類別準確度: 0.6258



1798/Unknown 497秒 274毫秒/步 - 損失: 0.9485 - 稀疏類別準確度: 0.6258



1799/Unknown 498秒 274毫秒/步 - 損失: 0.9484 - 稀疏類別準確度: 0.6259



1800/Unknown 498秒 274毫秒/步 - 損失: 0.9483 - 稀疏類別準確度: 0.6259



1801/Unknown 498秒 274毫秒/步 - 損失: 0.9482 - 稀疏類別準確度: 0.6259



1802/Unknown 499秒 274毫秒/步 - 損失: 0.9482 - 稀疏類別準確度: 0.6260



1803/Unknown 499秒 274毫秒/步 - 損失: 0.9481 - 稀疏類別準確度: 0.6260



1804/Unknown 499秒 274毫秒/步 - 損失: 0.9480 - 稀疏類別準確度: 0.6260



1805/Unknown 500秒 274毫秒/步 - 損失: 0.9479 - 稀疏類別準確度: 0.6260



1806/Unknown 500秒 274毫秒/步 - 損失: 0.9478 - 稀疏類別準確度: 0.6261



1807/Unknown 500秒 274毫秒/步 - 損失: 0.9477 - 稀疏類別準確度: 0.6261



1808/Unknown 501秒 274毫秒/步 - 損失: 0.9476 - 稀疏類別準確度: 0.6261



1809/Unknown 501秒 274毫秒/步 - 損失: 0.9475 - 稀疏類別準確度: 0.6262



1810/Unknown 501秒 274毫秒/步 - 損失: 0.9474 - 稀疏類別準確度: 0.6262



1811/Unknown 502秒 274毫秒/步 - 損失: 0.9473 - 稀疏類別準確度: 0.6262



1812/Unknown 502秒 274毫秒/步 - 損失: 0.9472 - 稀疏類別準確度: 0.6263



1813/Unknown 502秒 274毫秒/步 - 損失: 0.9471 - 稀疏類別準確度: 0.6263



1814/Unknown 503秒 274毫秒/步 - 損失: 0.9470 - 稀疏類別準確度: 0.6263



1815/Unknown 503秒 274毫秒/步 - 損失: 0.9469 - 稀疏類別準確度: 0.6263



1816/Unknown 503秒 274毫秒/步 - 損失: 0.9469 - 稀疏類別準確度: 0.6264



1817/Unknown 504秒 274毫秒/步 - 損失: 0.9468 - 稀疏類別準確度: 0.6264



1818/Unknown 504秒 274毫秒/步 - 損失: 0.9467 - 稀疏類別準確度: 0.6264



1819/Unknown 504秒 274毫秒/步 - 損失: 0.9466 - 稀疏類別準確度: 0.6265



1820/Unknown 505秒 274毫秒/步 - 損失: 0.9465 - 稀疏類別準確度: 0.6265



1821/Unknown 505秒 274毫秒/步 - 損失: 0.9464 - 稀疏類別準確度: 0.6265



1822/Unknown 505秒 274毫秒/步 - 損失: 0.9463 - 稀疏類別準確度: 0.6265



1823/Unknown 505秒 274毫秒/步 - 損失: 0.9462 - 稀疏類別準確度: 0.6266



1824/Unknown 506秒 274毫秒/步 - 損失: 0.9461 - 稀疏類別準確度: 0.6266



1825/Unknown 506秒 274毫秒/步 - 損失: 0.9460 - 稀疏類別準確度: 0.6266



1826/Unknown 506秒 274毫秒/步 - 損失: 0.9459 - 稀疏類別準確度: 0.6267



1827/Unknown 507秒 274毫秒/步 - 損失: 0.9458 - 稀疏類別準確度: 0.6267



1828/Unknown 507秒 274毫秒/步 - 損失: 0.9458 - 稀疏類別準確度: 0.6267



1829/Unknown 507秒 274毫秒/步 - 損失: 0.9457 - 稀疏類別準確度: 0.6267



1830/Unknown 508秒 274毫秒/步 - 損失: 0.9456 - 稀疏類別準確度: 0.6268



1831/Unknown 508秒 274毫秒/步 - 損失: 0.9455 - 稀疏類別準確度: 0.6268



1832/Unknown 508秒 274毫秒/步 - 損失: 0.9454 - 稀疏類別準確度: 0.6268



1833/Unknown 509秒 274毫秒/步 - 損失: 0.9453 - 稀疏類別準確度: 0.6269



1834/Unknown 509秒 274毫秒/步 - 損失: 0.9452 - 稀疏類別準確度: 0.6269



1835/Unknown 509秒 275毫秒/步 - 損失: 0.9451 - 稀疏類別準確度: 0.6269



1836/Unknown 510秒 275毫秒/步 - 損失: 0.9450 - 稀疏類別準確度: 0.6269



1837/Unknown 510秒 275毫秒/步 - 損失: 0.9449 - 稀疏類別準確度: 0.6270



1838/Unknown 510秒 275毫秒/步 - 損失: 0.9448 - 稀疏類別準確度: 0.6270



1839/Unknown 511秒 275毫秒/步 - 損失: 0.9448 - 稀疏類別準確度: 0.6270



1840/Unknown 511秒 275毫秒/步 - 損失: 0.9447 - 稀疏類別準確度: 0.6271



1841/Unknown 511秒 275毫秒/步 - 損失: 0.9446 - 稀疏類別準確度: 0.6271



1842/Unknown 512秒 275毫秒/步 - 損失: 0.9445 - 稀疏類別準確度: 0.6271



1843/Unknown 512秒 275毫秒/步 - 損失: 0.9444 - 稀疏類別準確度: 0.6271



1844/Unknown 513秒 275毫秒/步 - 損失: 0.9443 - 稀疏類別準確度: 0.6272



1845/Unknown 513秒 275毫秒/步 - 損失: 0.9442 - 稀疏類別準確度: 0.6272



1846/Unknown 513秒 275毫秒/步 - 損失: 0.9441 - 稀疏類別準確度: 0.6272



1847/Unknown 513秒 275毫秒/步 - 損失: 0.9440 - 稀疏類別準確度: 0.6273



1848/Unknown 514秒 275毫秒/步 - 損失: 0.9439 - 稀疏類別準確度: 0.6273



1849/Unknown 514秒 275毫秒/步 - 損失: 0.9439 - 稀疏類別準確度: 0.6273



1850/Unknown 514秒 275毫秒/步 - 損失: 0.9438 - 稀疏類別準確度: 0.6273



1851/Unknown 514秒 275毫秒/步 - 損失: 0.9437 - 稀疏類別準確度: 0.6274



1852/Unknown 515秒 275毫秒/步 - 損失: 0.9436 - 稀疏類別準確度: 0.6274



1853/Unknown 515秒 275毫秒/步 - 損失: 0.9435 - 稀疏類別準確度: 0.6274



1854/Unknown 515秒 275毫秒/步 - 損失: 0.9434 - 稀疏類別準確度: 0.6275



1855/Unknown 516秒 275毫秒/步 - 損失: 0.9433 - 稀疏類別準確度: 0.6275



1856/Unknown 516秒 275毫秒/步 - 損失: 0.9432 - 稀疏類別準確度: 0.6275



1857/Unknown 516秒 275毫秒/步 - 損失: 0.9431 - 稀疏類別準確度: 0.6275



1858/Unknown 517秒 275毫秒/步 - 損失: 0.9431 - 稀疏類別準確度: 0.6276



1859/Unknown 517秒 275毫秒/步 - 損失: 0.9430 - 稀疏類別準確度: 0.6276



1860/Unknown 517秒 275毫秒/步 - 損失: 0.9429 - 稀疏類別準確度: 0.6276



1861/Unknown 517秒 275毫秒/步 - 損失: 0.9428 - 稀疏類別準確度: 0.6277



1862/Unknown 518秒 275毫秒/步 - 損失: 0.9427 - 稀疏類別準確度: 0.6277



1863/Unknown 518秒 275毫秒/步 - 損失: 0.9426 - 稀疏類別準確度: 0.6277



1864/Unknown 518秒 275毫秒/步 - 損失: 0.9425 - 稀疏類別準確度: 0.6277



1865/Unknown 519秒 275毫秒/步 - 損失: 0.9424 - 稀疏類別準確度: 0.6278



1865/1865 ━━━━━━━━━━━━━━━━━━━━ 519秒 275毫秒/步 - 損失: 0.9423 - 稀疏類別準確度: 0.6278

Model training finished

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
  self._interrupted_warning()

Test accuracy: 71.32%

基準線性模型達到約 76% 的測試準確度。


實驗 2:廣度與深度模型

在第二個實驗中,我們建立了一個廣度與深度模型。模型中的廣度部分是線性模型,而深度部分是多層前饋網路。

在模型的廣度部分使用輸入特徵的稀疏表示法,在模型的深度部分使用輸入特徵的密集表示法。

請注意,每個輸入特徵都以不同的表示法貢獻於模型的兩個部分。

def create_wide_and_deep_model():
    inputs = create_model_inputs()
    wide = encode_inputs(inputs)
    wide = layers.BatchNormalization()(wide)

    deep = encode_inputs(inputs, use_embedding=True)
    for units in hidden_units:
        deep = layers.Dense(units)(deep)
        deep = layers.BatchNormalization()(deep)
        deep = layers.ReLU()(deep)
        deep = layers.Dropout(dropout_rate)(deep)

    merged = layers.concatenate([wide, deep])
    outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


wide_and_deep_model = create_wide_and_deep_model()
keras.utils.plot_model(wide_and_deep_model, show_shapes=True, rankdir="LR")

png

讓我們執行它

run_experiment(wide_and_deep_model)
Start training the model...
  1/Unknown  3s 3s/step - loss: 2.0684 - sparse_categorical_accuracy: 0.2566


  2/Unknown  4s 453ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2575


  3/Unknown  4s 434ms/step - loss: 2.1031 - sparse_categorical_accuracy: 0.2618


  4/Unknown  5s 456ms/step - loss: 2.1023 - sparse_categorical_accuracy: 0.2648


  5/Unknown  5s 455ms/step - loss: 2.0994 - sparse_categorical_accuracy: 0.2678


  6/Unknown  5s 452ms/step - loss: 2.0958 - sparse_categorical_accuracy: 0.2694


  7/Unknown  6s 455ms/step - loss: 2.0920 - sparse_categorical_accuracy: 0.2710


  8/Unknown  6s 470ms/step - loss: 2.0869 - sparse_categorical_accuracy: 0.2727


  9/Unknown  7s 479ms/step - loss: 2.0817 - sparse_categorical_accuracy: 0.2742


 10/Unknown  7s 481ms/step - loss: 2.0759 - sparse_categorical_accuracy: 0.2760


 11/Unknown  8s 477ms/step - loss: 2.0698 - sparse_categorical_accuracy: 0.2781


 12/Unknown  8s 481ms/step - loss: 2.0635 - sparse_categorical_accuracy: 0.2802


 13/Unknown  9s 476ms/step - loss: 2.0573 - sparse_categorical_accuracy: 0.2821


 14/Unknown  9s 479ms/step - loss: 2.0513 - sparse_categorical_accuracy: 0.2839


 15/Unknown  10s 480ms/step - loss: 2.0452 - sparse_categorical_accuracy: 0.2858


 16/Unknown  10s 481ms/step - loss: 2.0389 - sparse_categorical_accuracy: 0.2877


 17/Unknown  11s 477ms/step - loss: 2.0326 - sparse_categorical_accuracy: 0.2897


 18/Unknown  11s 478ms/step - loss: 2.0264 - sparse_categorical_accuracy: 0.2918


 19/Unknown  12s 477ms/step - loss: 2.0203 - sparse_categorical_accuracy: 0.2938


 20/Unknown  12s 477ms/step - loss: 2.0141 - sparse_categorical_accuracy: 0.2959


 21/Unknown  13s 476ms/step - loss: 2.0081 - sparse_categorical_accuracy: 0.2979


 22/Unknown  13s 473ms/step - loss: 2.0020 - sparse_categorical_accuracy: 0.2998


 23/Unknown  14s 475ms/step - loss: 1.9961 - sparse_categorical_accuracy: 0.3018


 24/Unknown  14s 476ms/step - loss: 1.9903 - sparse_categorical_accuracy: 0.3037


 25/Unknown  15s 477ms/step - loss: 1.9846 - sparse_categorical_accuracy: 0.3054


 26/Unknown  15s 478ms/step - loss: 1.9790 - sparse_categorical_accuracy: 0.3071


 27/Unknown  16s 478ms/step - loss: 1.9735 - sparse_categorical_accuracy: 0.3088


 28/Unknown  16s 477ms/step - loss: 1.9682 - sparse_categorical_accuracy: 0.3103


 29/Unknown  16s 477ms/step - loss: 1.9629 - sparse_categorical_accuracy: 0.3119


 30/Unknown  17s 478ms/step - loss: 1.9575 - sparse_categorical_accuracy: 0.3136


 31/Unknown  17s 478ms/step - loss: 1.9522 - sparse_categorical_accuracy: 0.3152


 32/Unknown  18s 479ms/step - loss: 1.9469 - sparse_categorical_accuracy: 0.3168


 33/Unknown  18s 478ms/step - loss: 1.9417 - sparse_categorical_accuracy: 0.3183


 34/Unknown  19s 479ms/step - loss: 1.9365 - sparse_categorical_accuracy: 0.3199


 35/Unknown  19s 478ms/step - loss: 1.9313 - sparse_categorical_accuracy: 0.3215


 36/Unknown  20s 478ms/step - loss: 1.9262 - sparse_categorical_accuracy: 0.3230


 37/Unknown  20s 476ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.3246


 38/Unknown  21s 473ms/step - loss: 1.9160 - sparse_categorical_accuracy: 0.3261


 39/Unknown  21s 469ms/step - loss: 1.9111 - sparse_categorical_accuracy: 0.3275


 40/Unknown  21s 466ms/step - loss: 1.9062 - sparse_categorical_accuracy: 0.3290


 41/Unknown  22s 464ms/step - loss: 1.9013 - sparse_categorical_accuracy: 0.3304


 42/Unknown  22s 463ms/step - loss: 1.8965 - sparse_categorical_accuracy: 0.3318


 43/Unknown  23s 461ms/step - loss: 1.8917 - sparse_categorical_accuracy: 0.3332


 44/Unknown  23s 460ms/step - loss: 1.8869 - sparse_categorical_accuracy: 0.3346


 45/Unknown  23s 458ms/step - loss: 1.8822 - sparse_categorical_accuracy: 0.3360


 46/Unknown  24s 457ms/step - loss: 1.8775 - sparse_categorical_accuracy: 0.3373


 47/Unknown  24s 457ms/step - loss: 1.8728 - sparse_categorical_accuracy: 0.3386


 48/Unknown  25s 455ms/step - loss: 1.8682 - sparse_categorical_accuracy: 0.3399


 49/Unknown  25s 455ms/step - loss: 1.8636 - sparse_categorical_accuracy: 0.3412


 50/Unknown  25s 456ms/step - loss: 1.8591 - sparse_categorical_accuracy: 0.3425


 51/Unknown  26s 457ms/step - loss: 1.8546 - sparse_categorical_accuracy: 0.3438


 52/Unknown  26s 458ms/step - loss: 1.8501 - sparse_categorical_accuracy: 0.3450


 53/Unknown  27s 460ms/step - loss: 1.8456 - sparse_categorical_accuracy: 0.3463


 54/Unknown  27s 460ms/step - loss: 1.8412 - sparse_categorical_accuracy: 0.3476


 55/Unknown  28s 460ms/step - loss: 1.8368 - sparse_categorical_accuracy: 0.3488


 56/Unknown  28s 461ms/step - loss: 1.8325 - sparse_categorical_accuracy: 0.3500


 57/Unknown  29s 461ms/step - loss: 1.8282 - sparse_categorical_accuracy: 0.3513


 58/Unknown  29s 461ms/step - loss: 1.8239 - sparse_categorical_accuracy: 0.3525


 59/Unknown  30s 462ms/step - loss: 1.8197 - sparse_categorical_accuracy: 0.3537


 60/Unknown  30s 463ms/step - loss: 1.8154 - sparse_categorical_accuracy: 0.3549


 61/Unknown  31s 464ms/step - loss: 1.8112 - sparse_categorical_accuracy: 0.3561


 62/Unknown  31s 464ms/step - loss: 1.8071 - sparse_categorical_accuracy: 0.3573


 63/Unknown  32s 465ms/step - loss: 1.8030 - sparse_categorical_accuracy: 0.3584


 64/Unknown  32s 465ms/step - loss: 1.7989 - sparse_categorical_accuracy: 0.3595


 65/Unknown  33s 466ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3606


 66/Unknown  33s 466ms/step - loss: 1.7908 - sparse_categorical_accuracy: 0.3618


 67/Unknown  34s 467ms/step - loss: 1.7869 - sparse_categorical_accuracy: 0.3628


 68/Unknown  34s 467ms/step - loss: 1.7829 - sparse_categorical_accuracy: 0.3639


 69/Unknown  35s 467ms/step - loss: 1.7790 - sparse_categorical_accuracy: 0.3650


 70/Unknown  35s 468ms/step - loss: 1.7752 - sparse_categorical_accuracy: 0.3661


 71/Unknown  36s 468ms/step - loss: 1.7713 - sparse_categorical_accuracy: 0.3671


 72/Unknown  36s 468ms/step - loss: 1.7675 - sparse_categorical_accuracy: 0.3682


 73/Unknown  37s 468ms/step - loss: 1.7638 - sparse_categorical_accuracy: 0.3692


 74/Unknown  37s 469ms/step - loss: 1.7600 - sparse_categorical_accuracy: 0.3703


 75/Unknown  38s 468ms/step - loss: 1.7563 - sparse_categorical_accuracy: 0.3713


 76/Unknown  38s 468ms/step - loss: 1.7526 - sparse_categorical_accuracy: 0.3723


 77/Unknown  39s 468ms/step - loss: 1.7490 - sparse_categorical_accuracy: 0.3733


 78/Unknown  39s 468ms/step - loss: 1.7453 - sparse_categorical_accuracy: 0.3743


 79/Unknown  40s 468ms/step - loss: 1.7417 - sparse_categorical_accuracy: 0.3753


 80/Unknown  40s 469ms/step - loss: 1.7382 - sparse_categorical_accuracy: 0.3763


 81/Unknown  41s 470ms/step - loss: 1.7346 - sparse_categorical_accuracy: 0.3773


 82/Unknown  41s 470ms/step - loss: 1.7312 - sparse_categorical_accuracy: 0.3783


 83/Unknown  42s 471ms/step - loss: 1.7277 - sparse_categorical_accuracy: 0.3792


 84/Unknown  42s 471ms/step - loss: 1.7243 - sparse_categorical_accuracy: 0.3802


 85/Unknown  43s 471ms/step - loss: 1.7209 - sparse_categorical_accuracy: 0.3811


 86/Unknown  43s 472ms/step - loss: 1.7175 - sparse_categorical_accuracy: 0.3821


 87/Unknown  44s 471ms/step - loss: 1.7142 - sparse_categorical_accuracy: 0.3830


 88/Unknown  44s 472ms/step - loss: 1.7109 - sparse_categorical_accuracy: 0.3839


 89/Unknown  45s 472ms/step - loss: 1.7076 - sparse_categorical_accuracy: 0.3848


 90/Unknown  45s 473ms/step - loss: 1.7043 - sparse_categorical_accuracy: 0.3857


 91/Unknown  46s 473ms/step - loss: 1.7011 - sparse_categorical_accuracy: 0.3866


 92/Unknown  46s 473ms/step - loss: 1.6979 - sparse_categorical_accuracy: 0.3875


 93/Unknown  47s 473ms/step - loss: 1.6947 - sparse_categorical_accuracy: 0.3884


 94/Unknown  47s 474ms/step - loss: 1.6916 - sparse_categorical_accuracy: 0.3893


 95/Unknown  48s 474ms/step - loss: 1.6884 - sparse_categorical_accuracy: 0.3902


 96/Unknown  48s 474ms/step - loss: 1.6853 - sparse_categorical_accuracy: 0.3911


 97/Unknown  49s 475ms/step - loss: 1.6822 - sparse_categorical_accuracy: 0.3920


 98/Unknown  49s 475ms/step - loss: 1.6791 - sparse_categorical_accuracy: 0.3928


 99/Unknown  50s 475ms/step - loss: 1.6761 - sparse_categorical_accuracy: 0.3937


100/Unknown  50s 475ms/step - loss: 1.6731 - sparse_categorical_accuracy: 0.3946


101/Unknown  51s 475ms/step - loss: 1.6700 - sparse_categorical_accuracy: 0.3954


102/Unknown  51s 475ms/step - loss: 1.6671 - sparse_categorical_accuracy: 0.3962


103/Unknown  52s 476ms/step - loss: 1.6641 - sparse_categorical_accuracy: 0.3971


104/Unknown  52s 476ms/step - loss: 1.6612 - sparse_categorical_accuracy: 0.3979


105/Unknown  53s 476ms/step - loss: 1.6582 - sparse_categorical_accuracy: 0.3988


106/Unknown  53s 476ms/step - loss: 1.6553 - sparse_categorical_accuracy: 0.3996


107/Unknown  54s 476ms/step - loss: 1.6525 - sparse_categorical_accuracy: 0.4004


108/Unknown  54s 476ms/step - loss: 1.6496 - sparse_categorical_accuracy: 0.4012


109/Unknown  55s 477ms/step - loss: 1.6468 - sparse_categorical_accuracy: 0.4020


110/Unknown  55s 477ms/step - loss: 1.6440 - sparse_categorical_accuracy: 0.4028


111/Unknown  56s 477ms/step - loss: 1.6412 - sparse_categorical_accuracy: 0.4036


112/Unknown  56s 477ms/step - loss: 1.6385 - sparse_categorical_accuracy: 0.4044


113/Unknown  57s 477ms/step - loss: 1.6357 - sparse_categorical_accuracy: 0.4052


114/Unknown  57s 477ms/step - loss: 1.6330 - sparse_categorical_accuracy: 0.4059


115/Unknown  57s 476ms/step - loss: 1.6303 - sparse_categorical_accuracy: 0.4067


116/Unknown  58s 477ms/step - loss: 1.6276 - sparse_categorical_accuracy: 0.4075


117/Unknown  58s 476ms/step - loss: 1.6249 - sparse_categorical_accuracy: 0.4082


118/Unknown  59s 477ms/step - loss: 1.6223 - sparse_categorical_accuracy: 0.4090


119/Unknown  59s 477ms/step - loss: 1.6196 - sparse_categorical_accuracy: 0.4098


120/Unknown  60s 477ms/step - loss: 1.6170 - sparse_categorical_accuracy: 0.4105


121/Unknown  60s 477ms/step - loss: 1.6144 - sparse_categorical_accuracy: 0.4113


122/Unknown  61s 477ms/step - loss: 1.6118 - sparse_categorical_accuracy: 0.4120


123/Unknown  61s 477ms/step - loss: 1.6093 - sparse_categorical_accuracy: 0.4128


124/Unknown  62s 477ms/step - loss: 1.6067 - sparse_categorical_accuracy: 0.4135


125/Unknown  62s 477ms/step - loss: 1.6042 - sparse_categorical_accuracy: 0.4142


126/Unknown  63s 477ms/step - loss: 1.6017 - sparse_categorical_accuracy: 0.4150


127/Unknown  63s 477ms/step - loss: 1.5991 - sparse_categorical_accuracy: 0.4157


128/Unknown  64s 477ms/step - loss: 1.5967 - sparse_categorical_accuracy: 0.4164


129/Unknown  64s 477ms/step - loss: 1.5942 - sparse_categorical_accuracy: 0.4172


130/Unknown  65s 477ms/step - loss: 1.5917 - sparse_categorical_accuracy: 0.4179


131/Unknown  65s 477ms/step - loss: 1.5893 - sparse_categorical_accuracy: 0.4186


132/Unknown  66s 477ms/step - loss: 1.5869 - sparse_categorical_accuracy: 0.4193


133/Unknown  66s 477ms/step - loss: 1.5844 - sparse_categorical_accuracy: 0.4200


134/Unknown  66s 476ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4207


135/Unknown  67s 476ms/step - loss: 1.5797 - sparse_categorical_accuracy: 0.4214


136/Unknown  67s 476ms/step - loss: 1.5773 - sparse_categorical_accuracy: 0.4221


137/Unknown  68s 475ms/step - loss: 1.5749 - sparse_categorical_accuracy: 0.4228


138/Unknown  68s 475ms/step - loss: 1.5726 - sparse_categorical_accuracy: 0.4235


139/Unknown  69s 475ms/step - loss: 1.5703 - sparse_categorical_accuracy: 0.4242


140/Unknown  69s 475ms/step - loss: 1.5680 - sparse_categorical_accuracy: 0.4249


141/Unknown  70s 474ms/step - loss: 1.5657 - sparse_categorical_accuracy: 0.4255


142/Unknown  70s 474ms/step - loss: 1.5634 - sparse_categorical_accuracy: 0.4262


143/Unknown  70s 474ms/step - loss: 1.5611 - sparse_categorical_accuracy: 0.4269


144/Unknown  71s 474ms/step - loss: 1.5589 - sparse_categorical_accuracy: 0.4276


145/Unknown  71s 474ms/step - loss: 1.5566 - sparse_categorical_accuracy: 0.4282


146/Unknown  72s 474ms/step - loss: 1.5544 - sparse_categorical_accuracy: 0.4289


147/Unknown  72s 474ms/step - loss: 1.5522 - sparse_categorical_accuracy: 0.4295


148/Unknown  73s 474ms/step - loss: 1.5500 - sparse_categorical_accuracy: 0.4302


149/Unknown  73s 473ms/step - loss: 1.5478 - sparse_categorical_accuracy: 0.4308


150/Unknown  74s 472ms/step - loss: 1.5456 - sparse_categorical_accuracy: 0.4315


151/Unknown  74s 472ms/step - loss: 1.5435 - sparse_categorical_accuracy: 0.4321


152/Unknown  74s 471ms/step - loss: 1.5413 - sparse_categorical_accuracy: 0.4328


153/Unknown  75s 470ms/step - loss: 1.5392 - sparse_categorical_accuracy: 0.4334


154/Unknown  75s 470ms/step - loss: 1.5370 - sparse_categorical_accuracy: 0.4340


155/Unknown  75s 469ms/step - loss: 1.5349 - sparse_categorical_accuracy: 0.4347


156/Unknown  76s 468ms/step - loss: 1.5328 - sparse_categorical_accuracy: 0.4353


157/Unknown  76s 468ms/step - loss: 1.5308 - sparse_categorical_accuracy: 0.4359


158/Unknown  76s 467ms/step - loss: 1.5287 - sparse_categorical_accuracy: 0.4365


159/Unknown  77s 467ms/step - loss: 1.5266 - sparse_categorical_accuracy: 0.4372


160/Unknown  77s 466ms/step - loss: 1.5246 - sparse_categorical_accuracy: 0.4378


161/Unknown  78s 466ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4384


162/Unknown  78s 465ms/step - loss: 1.5205 - sparse_categorical_accuracy: 0.4390


163/Unknown  78s 464ms/step - loss: 1.5185 - sparse_categorical_accuracy: 0.4396


164/Unknown  79s 464ms/step - loss: 1.5165 - sparse_categorical_accuracy: 0.4402


165/Unknown  79s 463ms/step - loss: 1.5145 - sparse_categorical_accuracy: 0.4408


166/Unknown  79s 462ms/step - loss: 1.5126 - sparse_categorical_accuracy: 0.4414


167/Unknown  80s 462ms/step - loss: 1.5106 - sparse_categorical_accuracy: 0.4420


168/Unknown  80s 462ms/step - loss: 1.5087 - sparse_categorical_accuracy: 0.4425


169/Unknown  81s 462ms/step - loss: 1.5067 - sparse_categorical_accuracy: 0.4431


170/Unknown  81s 462ms/step - loss: 1.5048 - sparse_categorical_accuracy: 0.4437


171/Unknown  82s 461ms/step - loss: 1.5029 - sparse_categorical_accuracy: 0.4443


172/Unknown  82s 461ms/step - loss: 1.5010 - sparse_categorical_accuracy: 0.4449


173/Unknown  82s 461ms/step - loss: 1.4991 - sparse_categorical_accuracy: 0.4454


174/Unknown  83s 460ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4460


175/Unknown  83s 460ms/step - loss: 1.4953 - sparse_categorical_accuracy: 0.4466


176/Unknown  83s 459ms/step - loss: 1.4935 - sparse_categorical_accuracy: 0.4471


177/Unknown  84s 458ms/step - loss: 1.4916 - sparse_categorical_accuracy: 0.4477


178/Unknown  84s 457ms/step - loss: 1.4898 - sparse_categorical_accuracy: 0.4482


179/Unknown  84s 457ms/step - loss: 1.4880 - sparse_categorical_accuracy: 0.4488


180/Unknown  85s 456ms/step - loss: 1.4861 - sparse_categorical_accuracy: 0.4493


181/Unknown  85s 455ms/step - loss: 1.4843 - sparse_categorical_accuracy: 0.4499


182/Unknown  85s 454ms/step - loss: 1.4825 - sparse_categorical_accuracy: 0.4504


183/Unknown  86s 454ms/step - loss: 1.4807 - sparse_categorical_accuracy: 0.4510


184/Unknown  86s 453ms/step - loss: 1.4790 - sparse_categorical_accuracy: 0.4515


185/Unknown  86s 452ms/step - loss: 1.4772 - sparse_categorical_accuracy: 0.4521


186/Unknown  87s 452ms/step - loss: 1.4754 - sparse_categorical_accuracy: 0.4526


187/Unknown  87s 451ms/step - loss: 1.4737 - sparse_categorical_accuracy: 0.4531


188/Unknown  87s 451ms/step - loss: 1.4719 - sparse_categorical_accuracy: 0.4537


189/Unknown  88s 450ms/step - loss: 1.4702 - sparse_categorical_accuracy: 0.4542


190/Unknown  88s 450ms/step - loss: 1.4685 - sparse_categorical_accuracy: 0.4547


191/Unknown  89s 450ms/step - loss: 1.4668 - sparse_categorical_accuracy: 0.4552


192/Unknown  89s 450ms/step - loss: 1.4651 - sparse_categorical_accuracy: 0.4557


193/Unknown  89s 450ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4563


194/Unknown  90s 449ms/step - loss: 1.4617 - sparse_categorical_accuracy: 0.4568


195/Unknown  90s 449ms/step - loss: 1.4600 - sparse_categorical_accuracy: 0.4573


196/Unknown  91s 449ms/step - loss: 1.4583 - sparse_categorical_accuracy: 0.4578


197/Unknown  91s 449ms/step - loss: 1.4567 - sparse_categorical_accuracy: 0.4583


198/Unknown  92s 449ms/step - loss: 1.4550 - sparse_categorical_accuracy: 0.4588


199/Unknown  92s 449ms/step - loss: 1.4534 - sparse_categorical_accuracy: 0.4593


200/Unknown  92s 449ms/step - loss: 1.4517 - sparse_categorical_accuracy: 0.4598


201/Unknown  93s 448ms/step - loss: 1.4501 - sparse_categorical_accuracy: 0.4603


202/Unknown  93s 448ms/step - loss: 1.4485 - sparse_categorical_accuracy: 0.4608


203/Unknown  94s 447ms/step - loss: 1.4469 - sparse_categorical_accuracy: 0.4613


204/Unknown  94s 447ms/step - loss: 1.4453 - sparse_categorical_accuracy: 0.4618


205/Unknown  94s 447ms/step - loss: 1.4437 - sparse_categorical_accuracy: 0.4623


206/Unknown  95s 447ms/step - loss: 1.4421 - sparse_categorical_accuracy: 0.4628


207/Unknown  95s 446ms/step - loss: 1.4406 - sparse_categorical_accuracy: 0.4632


208/Unknown  95s 446ms/step - loss: 1.4390 - sparse_categorical_accuracy: 0.4637


209/Unknown  96s 445ms/step - loss: 1.4374 - sparse_categorical_accuracy: 0.4642


210/Unknown  96s 445ms/step - loss: 1.4359 - sparse_categorical_accuracy: 0.4647


211/Unknown  97s 445ms/step - loss: 1.4343 - sparse_categorical_accuracy: 0.4651


212/Unknown  97s 444ms/step - loss: 1.4328 - sparse_categorical_accuracy: 0.4656


213/Unknown  97s 444ms/step - loss: 1.4313 - sparse_categorical_accuracy: 0.4661


214/Unknown  98s 444ms/step - loss: 1.4297 - sparse_categorical_accuracy: 0.4666


215/Unknown  98s 444ms/step - loss: 1.4282 - sparse_categorical_accuracy: 0.4670


216/Unknown  99s 444ms/step - loss: 1.4267 - sparse_categorical_accuracy: 0.4675


217/Unknown  99s 445ms/step - loss: 1.4252 - sparse_categorical_accuracy: 0.4679


218/Unknown  100s 445ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4684


219/Unknown  100s 445ms/step - loss: 1.4222 - sparse_categorical_accuracy: 0.4689


220/Unknown  101s 445ms/step - loss: 1.4207 - sparse_categorical_accuracy: 0.4693


221/Unknown  101s 444ms/step - loss: 1.4192 - sparse_categorical_accuracy: 0.4698


222/Unknown  101s 444ms/step - loss: 1.4178 - sparse_categorical_accuracy: 0.4702


223/Unknown  102s 444ms/step - loss: 1.4163 - sparse_categorical_accuracy: 0.4707


224/Unknown  102s 443ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4711


225/Unknown  102s 443ms/step - loss: 1.4134 - sparse_categorical_accuracy: 0.4716


226/Unknown  103s 442ms/step - loss: 1.4120 - sparse_categorical_accuracy: 0.4720


227/Unknown  103s 442ms/step - loss: 1.4105 - sparse_categorical_accuracy: 0.4725


228/Unknown  103s 441ms/step - loss: 1.4091 - sparse_categorical_accuracy: 0.4729


229/Unknown  104s 441ms/step - loss: 1.4077 - sparse_categorical_accuracy: 0.4734


230/Unknown  104s 440ms/step - loss: 1.4063 - sparse_categorical_accuracy: 0.4738


231/Unknown  104s 440ms/step - loss: 1.4048 - sparse_categorical_accuracy: 0.4742


232/Unknown  105s 439ms/step - loss: 1.4034 - sparse_categorical_accuracy: 0.4747


233/Unknown  105s 439ms/step - loss: 1.4020 - sparse_categorical_accuracy: 0.4751


234/Unknown  105s 439ms/step - loss: 1.4007 - sparse_categorical_accuracy: 0.4755


235/Unknown  106s 438ms/step - loss: 1.3993 - sparse_categorical_accuracy: 0.4759


236/Unknown  106s 438ms/step - loss: 1.3979 - sparse_categorical_accuracy: 0.4764


237/Unknown  106s 437ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4768


238/Unknown  107s 437ms/step - loss: 1.3952 - sparse_categorical_accuracy: 0.4772


239/Unknown  107s 437ms/step - loss: 1.3938 - sparse_categorical_accuracy: 0.4776


240/Unknown  108s 437ms/step - loss: 1.3925 - sparse_categorical_accuracy: 0.4780


241/Unknown  108s 437ms/step - loss: 1.3911 - sparse_categorical_accuracy: 0.4785


242/Unknown  109s 437ms/step - loss: 1.3898 - sparse_categorical_accuracy: 0.4789


243/Unknown  109s 437ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4793


244/Unknown  109s 437ms/step - loss: 1.3871 - sparse_categorical_accuracy: 0.4797


245/Unknown  110s 437ms/step - loss: 1.3858 - sparse_categorical_accuracy: 0.4801


246/Unknown  110s 437ms/step - loss: 1.3845 - sparse_categorical_accuracy: 0.4805


247/Unknown  111s 437ms/step - loss: 1.3832 - sparse_categorical_accuracy: 0.4809


248/Unknown  111s 437ms/step - loss: 1.3819 - sparse_categorical_accuracy: 0.4813


249/Unknown  111s 436ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4817


250/Unknown  112s 436ms/step - loss: 1.3793 - sparse_categorical_accuracy: 0.4821


251/Unknown  112s 435ms/step - loss: 1.3780 - sparse_categorical_accuracy: 0.4825


252/Unknown  112s 435ms/step - loss: 1.3767 - sparse_categorical_accuracy: 0.4829


253/Unknown  113s 435ms/step - loss: 1.3754 - sparse_categorical_accuracy: 0.4833


254/Unknown  113s 435ms/step - loss: 1.3742 - sparse_categorical_accuracy: 0.4837


255/Unknown  113s 434ms/step - loss: 1.3729 - sparse_categorical_accuracy: 0.4841


256/Unknown  114s 434ms/step - loss: 1.3716 - sparse_categorical_accuracy: 0.4845


257/Unknown  114s 434ms/step - loss: 1.3704 - sparse_categorical_accuracy: 0.4849


258/Unknown  115s 434ms/step - loss: 1.3691 - sparse_categorical_accuracy: 0.4853


259/Unknown  115s 433ms/step - loss: 1.3679 - sparse_categorical_accuracy: 0.4857


260/Unknown  115s 433ms/step - loss: 1.3666 - sparse_categorical_accuracy: 0.4861


261/Unknown  116s 433ms/step - loss: 1.3654 - sparse_categorical_accuracy: 0.4864


262/Unknown  116s 433ms/step - loss: 1.3642 - sparse_categorical_accuracy: 0.4868


263/Unknown  116s 433ms/step - loss: 1.3629 - sparse_categorical_accuracy: 0.4872


264/Unknown  117s 433ms/step - loss: 1.3617 - sparse_categorical_accuracy: 0.4876


265/Unknown  117s 432ms/step - loss: 1.3605 - sparse_categorical_accuracy: 0.4880


266/Unknown  118s 432ms/step - loss: 1.3593 - sparse_categorical_accuracy: 0.4883


267/Unknown  118s 432ms/step - loss: 1.3581 - sparse_categorical_accuracy: 0.4887


268/Unknown  118s 432ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.4891


269/Unknown  119s 432ms/step - loss: 1.3557 - sparse_categorical_accuracy: 0.4895


270/Unknown  119s 432ms/step - loss: 1.3545 - sparse_categorical_accuracy: 0.4898


271/Unknown  120s 432ms/step - loss: 1.3533 - sparse_categorical_accuracy: 0.4902


272/Unknown  120s 432ms/step - loss: 1.3521 - sparse_categorical_accuracy: 0.4906


273/Unknown  121s 432ms/step - loss: 1.3509 - sparse_categorical_accuracy: 0.4909


274/Unknown  121s 432ms/step - loss: 1.3497 - sparse_categorical_accuracy: 0.4913


275/Unknown  121s 432ms/step - loss: 1.3486 - sparse_categorical_accuracy: 0.4917


276/Unknown  122s 432ms/step - loss: 1.3474 - sparse_categorical_accuracy: 0.4920


277/Unknown  122s 432ms/step - loss: 1.3462 - sparse_categorical_accuracy: 0.4924


278/Unknown  123s 432ms/step - loss: 1.3451 - sparse_categorical_accuracy: 0.4928


279/Unknown  123s 431ms/step - loss: 1.3439 - sparse_categorical_accuracy: 0.4931


280/Unknown  123s 431ms/step - loss: 1.3428 - sparse_categorical_accuracy: 0.4935


281/Unknown  124s 431ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.4938


282/Unknown  124s 430ms/step - loss: 1.3405 - sparse_categorical_accuracy: 0.4942


283/Unknown  124s 430ms/step - loss: 1.3393 - sparse_categorical_accuracy: 0.4946


284/Unknown  125s 430ms/step - loss: 1.3382 - sparse_categorical_accuracy: 0.4949


285/Unknown  125s 430ms/step - loss: 1.3371 - sparse_categorical_accuracy: 0.4953


286/Unknown  126s 430ms/step - loss: 1.3360 - sparse_categorical_accuracy: 0.4956


287/Unknown  126s 430ms/step - loss: 1.3348 - sparse_categorical_accuracy: 0.4960


288/Unknown  126s 429ms/step - loss: 1.3337 - sparse_categorical_accuracy: 0.4963


289/Unknown  127s 429ms/step - loss: 1.3326 - sparse_categorical_accuracy: 0.4967


290/Unknown  127s 429ms/step - loss: 1.3315 - sparse_categorical_accuracy: 0.4970


291/Unknown  128s 429ms/step - loss: 1.3304 - sparse_categorical_accuracy: 0.4974


292/Unknown  128s 429ms/step - loss: 1.3293 - sparse_categorical_accuracy: 0.4977


293/Unknown  128s 429ms/step - loss: 1.3282 - sparse_categorical_accuracy: 0.4980


294/Unknown  129s 429ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.4984


295/Unknown  129s 429ms/step - loss: 1.3260 - sparse_categorical_accuracy: 0.4987


296/Unknown  130s 429ms/step - loss: 1.3250 - sparse_categorical_accuracy: 0.4991


297/Unknown  130s 429ms/step - loss: 1.3239 - sparse_categorical_accuracy: 0.4994


298/Unknown  131s 429ms/step - loss: 1.3228 - sparse_categorical_accuracy: 0.4997


299/Unknown  131s 429ms/step - loss: 1.3217 - sparse_categorical_accuracy: 0.5001


300/Unknown  132s 429ms/step - loss: 1.3207 - sparse_categorical_accuracy: 0.5004


301/Unknown  132s 429ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5007


302/Unknown  132s 429ms/step - loss: 1.3186 - sparse_categorical_accuracy: 0.5011


303/Unknown  133s 429ms/step - loss: 1.3175 - sparse_categorical_accuracy: 0.5014


304/Unknown  133s 429ms/step - loss: 1.3165 - sparse_categorical_accuracy: 0.5017


305/Unknown  133s 429ms/step - loss: 1.3154 - sparse_categorical_accuracy: 0.5021


306/Unknown  134s 429ms/step - loss: 1.3144 - sparse_categorical_accuracy: 0.5024


307/Unknown  134s 428ms/step - loss: 1.3133 - sparse_categorical_accuracy: 0.5027


308/Unknown  135s 428ms/step - loss: 1.3123 - sparse_categorical_accuracy: 0.5030


309/Unknown  135s 428ms/step - loss: 1.3113 - sparse_categorical_accuracy: 0.5034


310/Unknown  135s 428ms/step - loss: 1.3103 - sparse_categorical_accuracy: 0.5037


311/Unknown  136s 428ms/step - loss: 1.3092 - sparse_categorical_accuracy: 0.5040


312/Unknown  136s 428ms/step - loss: 1.3082 - sparse_categorical_accuracy: 0.5043


313/Unknown  136s 427ms/step - loss: 1.3072 - sparse_categorical_accuracy: 0.5047


314/Unknown  137s 427ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5050


315/Unknown  137s 427ms/step - loss: 1.3052 - sparse_categorical_accuracy: 0.5053


316/Unknown  138s 427ms/step - loss: 1.3042 - sparse_categorical_accuracy: 0.5056


317/Unknown  138s 427ms/step - loss: 1.3032 - sparse_categorical_accuracy: 0.5059


318/Unknown  138s 427ms/step - loss: 1.3022 - sparse_categorical_accuracy: 0.5062


319/Unknown  139s 427ms/step - loss: 1.3012 - sparse_categorical_accuracy: 0.5066


320/Unknown  139s 426ms/step - loss: 1.3002 - sparse_categorical_accuracy: 0.5069


321/Unknown  140s 427ms/step - loss: 1.2992 - sparse_categorical_accuracy: 0.5072


322/Unknown  140s 427ms/step - loss: 1.2982 - sparse_categorical_accuracy: 0.5075


323/Unknown  141s 427ms/step - loss: 1.2973 - sparse_categorical_accuracy: 0.5078


324/Unknown  141s 427ms/step - loss: 1.2963 - sparse_categorical_accuracy: 0.5081


325/Unknown  141s 427ms/step - loss: 1.2953 - sparse_categorical_accuracy: 0.5084


326/Unknown  142s 427ms/step - loss: 1.2943 - sparse_categorical_accuracy: 0.5087


327/Unknown  142s 427ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5090


328/Unknown  143s 427ms/step - loss: 1.2924 - sparse_categorical_accuracy: 0.5093


329/Unknown  143s 426ms/step - loss: 1.2915 - sparse_categorical_accuracy: 0.5096


330/Unknown  143s 426ms/step - loss: 1.2905 - sparse_categorical_accuracy: 0.5099


331/Unknown  144s 426ms/step - loss: 1.2895 - sparse_categorical_accuracy: 0.5103


332/Unknown  144s 426ms/step - loss: 1.2886 - sparse_categorical_accuracy: 0.5106


333/Unknown  145s 426ms/step - loss: 1.2876 - sparse_categorical_accuracy: 0.5109


334/Unknown  145s 426ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5112


335/Unknown  145s 426ms/step - loss: 1.2858 - sparse_categorical_accuracy: 0.5115


336/Unknown  146s 426ms/step - loss: 1.2848 - sparse_categorical_accuracy: 0.5118


337/Unknown  146s 426ms/step - loss: 1.2839 - sparse_categorical_accuracy: 0.5121


338/Unknown  146s 425ms/step - loss: 1.2830 - sparse_categorical_accuracy: 0.5124


339/Unknown  147s 425ms/step - loss: 1.2820 - sparse_categorical_accuracy: 0.5126


340/Unknown  147s 425ms/step - loss: 1.2811 - sparse_categorical_accuracy: 0.5129


341/Unknown  148s 425ms/step - loss: 1.2802 - sparse_categorical_accuracy: 0.5132


342/Unknown  148s 425ms/step - loss: 1.2793 - sparse_categorical_accuracy: 0.5135


343/Unknown  149s 425ms/step - loss: 1.2784 - sparse_categorical_accuracy: 0.5138


344/Unknown  149s 425ms/step - loss: 1.2775 - sparse_categorical_accuracy: 0.5141


345/Unknown  149s 425ms/step - loss: 1.2765 - sparse_categorical_accuracy: 0.5144


346/Unknown  150s 426ms/step - loss: 1.2756 - sparse_categorical_accuracy: 0.5147


347/Unknown  150s 425ms/step - loss: 1.2747 - sparse_categorical_accuracy: 0.5150


348/Unknown  151s 425ms/step - loss: 1.2738 - sparse_categorical_accuracy: 0.5153


349/Unknown  151s 425ms/step - loss: 1.2729 - sparse_categorical_accuracy: 0.5156


350/Unknown  151s 425ms/step - loss: 1.2721 - sparse_categorical_accuracy: 0.5158


351/Unknown  152s 425ms/step - loss: 1.2712 - sparse_categorical_accuracy: 0.5161


352/Unknown  152s 424ms/step - loss: 1.2703 - sparse_categorical_accuracy: 0.5164


353/Unknown  152s 424ms/step - loss: 1.2694 - sparse_categorical_accuracy: 0.5167


354/Unknown  153s 424ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5170


355/Unknown  153s 423ms/step - loss: 1.2676 - sparse_categorical_accuracy: 0.5172


356/Unknown  153s 423ms/step - loss: 1.2668 - sparse_categorical_accuracy: 0.5175


357/Unknown  154s 423ms/step - loss: 1.2659 - sparse_categorical_accuracy: 0.5178


358/Unknown  154s 423ms/step - loss: 1.2650 - sparse_categorical_accuracy: 0.5181


359/Unknown  154s 422ms/step - loss: 1.2642 - sparse_categorical_accuracy: 0.5184


360/Unknown  155s 422ms/step - loss: 1.2633 - sparse_categorical_accuracy: 0.5186


361/Unknown  155s 422ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5189


362/Unknown  155s 422ms/step - loss: 1.2616 - sparse_categorical_accuracy: 0.5192


363/Unknown  156s 422ms/step - loss: 1.2607 - sparse_categorical_accuracy: 0.5195


364/Unknown  156s 421ms/step - loss: 1.2599 - sparse_categorical_accuracy: 0.5197


365/Unknown  156s 421ms/step - loss: 1.2590 - sparse_categorical_accuracy: 0.5200


366/Unknown  157s 421ms/step - loss: 1.2582 - sparse_categorical_accuracy: 0.5203


367/Unknown  157s 421ms/step - loss: 1.2573 - sparse_categorical_accuracy: 0.5206


368/Unknown  158s 421ms/step - loss: 1.2565 - sparse_categorical_accuracy: 0.5208


369/Unknown  158s 421ms/step - loss: 1.2557 - sparse_categorical_accuracy: 0.5211


370/Unknown  159s 421ms/step - loss: 1.2548 - sparse_categorical_accuracy: 0.5214


371/Unknown  159s 421ms/step - loss: 1.2540 - sparse_categorical_accuracy: 0.5216


372/Unknown  159s 421ms/step - loss: 1.2532 - sparse_categorical_accuracy: 0.5219


373/Unknown  160s 420ms/step - loss: 1.2523 - sparse_categorical_accuracy: 0.5222


374/Unknown  160s 420ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5224


375/Unknown  160s 420ms/step - loss: 1.2507 - sparse_categorical_accuracy: 0.5227


376/Unknown  161s 420ms/step - loss: 1.2499 - sparse_categorical_accuracy: 0.5230


377/Unknown  161s 420ms/step - loss: 1.2491 - sparse_categorical_accuracy: 0.5232


378/Unknown  161s 420ms/step - loss: 1.2482 - sparse_categorical_accuracy: 0.5235


379/Unknown  162s 420ms/step - loss: 1.2474 - sparse_categorical_accuracy: 0.5237


380/Unknown  162s 420ms/step - loss: 1.2466 - sparse_categorical_accuracy: 0.5240


381/Unknown  163s 419ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5243


382/Unknown  163s 419ms/step - loss: 1.2450 - sparse_categorical_accuracy: 0.5245


383/Unknown  163s 419ms/step - loss: 1.2442 - sparse_categorical_accuracy: 0.5248


384/Unknown  164s 419ms/step - loss: 1.2434 - sparse_categorical_accuracy: 0.5250


385/Unknown  164s 419ms/step - loss: 1.2426 - sparse_categorical_accuracy: 0.5253


386/Unknown  165s 419ms/step - loss: 1.2418 - sparse_categorical_accuracy: 0.5256


387/Unknown  165s 419ms/step - loss: 1.2410 - sparse_categorical_accuracy: 0.5258


388/Unknown  165s 419ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5261


389/Unknown  166s 419ms/step - loss: 1.2395 - sparse_categorical_accuracy: 0.5263


390/Unknown  166s 419ms/step - loss: 1.2387 - sparse_categorical_accuracy: 0.5266


391/Unknown  167s 419ms/step - loss: 1.2379 - sparse_categorical_accuracy: 0.5268


392/Unknown  167s 419ms/step - loss: 1.2371 - sparse_categorical_accuracy: 0.5271


393/Unknown  167s 419ms/step - loss: 1.2363 - sparse_categorical_accuracy: 0.5273


394/Unknown  168s 419ms/step - loss: 1.2356 - sparse_categorical_accuracy: 0.5276


395/Unknown  168s 419ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5278


396/Unknown  168s 419ms/step - loss: 1.2340 - sparse_categorical_accuracy: 0.5281


397/Unknown  169s 418ms/step - loss: 1.2333 - sparse_categorical_accuracy: 0.5283


398/Unknown  169s 418ms/step - loss: 1.2325 - sparse_categorical_accuracy: 0.5286


399/Unknown  170s 418ms/step - loss: 1.2317 - sparse_categorical_accuracy: 0.5288


400/Unknown  170s 418ms/step - loss: 1.2310 - sparse_categorical_accuracy: 0.5290


401/Unknown  170s 418ms/step - loss: 1.2302 - sparse_categorical_accuracy: 0.5293


402/Unknown  171s 418ms/step - loss: 1.2295 - sparse_categorical_accuracy: 0.5295


403/Unknown  171s 418ms/step - loss: 1.2287 - sparse_categorical_accuracy: 0.5298


404/Unknown  171s 418ms/step - loss: 1.2280 - sparse_categorical_accuracy: 0.5300


405/Unknown  172s 418ms/step - loss: 1.2272 - sparse_categorical_accuracy: 0.5303


406/Unknown  172s 418ms/step - loss: 1.2265 - sparse_categorical_accuracy: 0.5305


407/Unknown  173s 418ms/step - loss: 1.2257 - sparse_categorical_accuracy: 0.5307


408/Unknown  173s 418ms/step - loss: 1.2250 - sparse_categorical_accuracy: 0.5310


409/Unknown  174s 418ms/step - loss: 1.2243 - sparse_categorical_accuracy: 0.5312


410/Unknown  174s 418ms/step - loss: 1.2235 - sparse_categorical_accuracy: 0.5314


411/Unknown  175s 418ms/step - loss: 1.2228 - sparse_categorical_accuracy: 0.5317


412/Unknown  175s 419ms/step - loss: 1.2221 - sparse_categorical_accuracy: 0.5319


413/Unknown  176s 419ms/step - loss: 1.2213 - sparse_categorical_accuracy: 0.5322


414/Unknown  176s 419ms/step - loss: 1.2206 - sparse_categorical_accuracy: 0.5324


415/Unknown  176s 419ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5326


416/Unknown  177s 419ms/step - loss: 1.2192 - sparse_categorical_accuracy: 0.5329


417/Unknown  177s 418ms/step - loss: 1.2185 - sparse_categorical_accuracy: 0.5331


418/Unknown  177s 418ms/step - loss: 1.2177 - sparse_categorical_accuracy: 0.5333


419/Unknown  178s 418ms/step - loss: 1.2170 - sparse_categorical_accuracy: 0.5336


420/Unknown  178s 418ms/step - loss: 1.2163 - sparse_categorical_accuracy: 0.5338


421/Unknown  179s 418ms/step - loss: 1.2156 - sparse_categorical_accuracy: 0.5340


422/Unknown  179s 418ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5342


423/Unknown  179s 418ms/step - loss: 1.2142 - sparse_categorical_accuracy: 0.5345


424/Unknown  180s 417ms/step - loss: 1.2135 - sparse_categorical_accuracy: 0.5347


425/Unknown  180s 417ms/step - loss: 1.2128 - sparse_categorical_accuracy: 0.5349


426/Unknown  180s 417ms/step - loss: 1.2121 - sparse_categorical_accuracy: 0.5351


427/Unknown  181s 417ms/step - loss: 1.2114 - sparse_categorical_accuracy: 0.5354


428/Unknown  181s 417ms/step - loss: 1.2107 - sparse_categorical_accuracy: 0.5356


429/Unknown  182s 417ms/step - loss: 1.2100 - sparse_categorical_accuracy: 0.5358


430/Unknown  182s 418ms/step - loss: 1.2093 - sparse_categorical_accuracy: 0.5360


431/Unknown  183s 418ms/step - loss: 1.2086 - sparse_categorical_accuracy: 0.5363


432/Unknown  183s 418ms/step - loss: 1.2079 - sparse_categorical_accuracy: 0.5365


433/Unknown  184s 418ms/step - loss: 1.2072 - sparse_categorical_accuracy: 0.5367


434/Unknown  184s 418ms/step - loss: 1.2065 - sparse_categorical_accuracy: 0.5369


435/Unknown  185s 418ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5372


436/Unknown  185s 418ms/step - loss: 1.2052 - sparse_categorical_accuracy: 0.5374


437/Unknown  185s 418ms/step - loss: 1.2045 - sparse_categorical_accuracy: 0.5376


438/Unknown  186s 418ms/step - loss: 1.2038 - sparse_categorical_accuracy: 0.5378


439/Unknown  186s 418ms/step - loss: 1.2032 - sparse_categorical_accuracy: 0.5380


440/Unknown  187s 418ms/step - loss: 1.2025 - sparse_categorical_accuracy: 0.5383


441/Unknown  187s 418ms/step - loss: 1.2018 - sparse_categorical_accuracy: 0.5385


442/Unknown  187s 418ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5387


443/Unknown  188s 418ms/step - loss: 1.2005 - sparse_categorical_accuracy: 0.5389


444/Unknown  188s 417ms/step - loss: 1.1998 - sparse_categorical_accuracy: 0.5391


445/Unknown  188s 417ms/step - loss: 1.1992 - sparse_categorical_accuracy: 0.5393


446/Unknown  189s 417ms/step - loss: 1.1985 - sparse_categorical_accuracy: 0.5396


447/Unknown  189s 417ms/step - loss: 1.1978 - sparse_categorical_accuracy: 0.5398


448/Unknown  190s 417ms/step - loss: 1.1972 - sparse_categorical_accuracy: 0.5400


449/Unknown  190s 417ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5402


450/Unknown  190s 417ms/step - loss: 1.1959 - sparse_categorical_accuracy: 0.5404


451/Unknown  191s 417ms/step - loss: 1.1952 - sparse_categorical_accuracy: 0.5406


452/Unknown  191s 417ms/step - loss: 1.1946 - sparse_categorical_accuracy: 0.5408


453/Unknown  191s 417ms/step - loss: 1.1939 - sparse_categorical_accuracy: 0.5410


454/Unknown  192s 417ms/step - loss: 1.1933 - sparse_categorical_accuracy: 0.5413


455/Unknown  192s 417ms/step - loss: 1.1926 - sparse_categorical_accuracy: 0.5415


456/Unknown  193s 417ms/step - loss: 1.1920 - sparse_categorical_accuracy: 0.5417


457/Unknown  193s 417ms/step - loss: 1.1913 - sparse_categorical_accuracy: 0.5419


458/Unknown  193s 417ms/step - loss: 1.1907 - sparse_categorical_accuracy: 0.5421


459/Unknown  194s 417ms/step - loss: 1.1900 - sparse_categorical_accuracy: 0.5423


460/Unknown  194s 417ms/step - loss: 1.1894 - sparse_categorical_accuracy: 0.5425


461/Unknown  195s 417ms/step - loss: 1.1888 - sparse_categorical_accuracy: 0.5427


462/Unknown  195s 417ms/step - loss: 1.1881 - sparse_categorical_accuracy: 0.5429


463/Unknown  196s 417ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5431


464/Unknown  196s 417ms/step - loss: 1.1869 - sparse_categorical_accuracy: 0.5433


465/Unknown  197s 417ms/step - loss: 1.1862 - sparse_categorical_accuracy: 0.5435


466/Unknown  197s 417ms/step - loss: 1.1856 - sparse_categorical_accuracy: 0.5437


467/Unknown  198s 417ms/step - loss: 1.1850 - sparse_categorical_accuracy: 0.5439


468/Unknown  198s 417ms/step - loss: 1.1844 - sparse_categorical_accuracy: 0.5441


469/Unknown  198s 417ms/step - loss: 1.1837 - sparse_categorical_accuracy: 0.5443


470/Unknown  199s 417ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5446


471/Unknown  199s 417ms/step - loss: 1.1825 - sparse_categorical_accuracy: 0.5448


472/Unknown  199s 417ms/step - loss: 1.1819 - sparse_categorical_accuracy: 0.5450


473/Unknown  200s 417ms/step - loss: 1.1813 - sparse_categorical_accuracy: 0.5452


474/Unknown  200s 417ms/step - loss: 1.1807 - sparse_categorical_accuracy: 0.5454


475/Unknown  201s 417ms/step - loss: 1.1800 - sparse_categorical_accuracy: 0.5456


476/Unknown  201s 416ms/step - loss: 1.1794 - sparse_categorical_accuracy: 0.5458


477/Unknown  201s 417ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5460


478/Unknown  202s 416ms/step - loss: 1.1782 - sparse_categorical_accuracy: 0.5461


479/Unknown  202s 416ms/step - loss: 1.1776 - sparse_categorical_accuracy: 0.5463


480/Unknown  203s 416ms/step - loss: 1.1770 - sparse_categorical_accuracy: 0.5465


481/Unknown  203s 416ms/step - loss: 1.1764 - sparse_categorical_accuracy: 0.5467


482/Unknown  203s 416ms/step - loss: 1.1758 - sparse_categorical_accuracy: 0.5469


483/Unknown  204s 416ms/step - loss: 1.1752 - sparse_categorical_accuracy: 0.5471


484/Unknown  204s 416ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5473


485/Unknown  205s 416ms/step - loss: 1.1740 - sparse_categorical_accuracy: 0.5475


486/Unknown  205s 416ms/step - loss: 1.1734 - sparse_categorical_accuracy: 0.5477


487/Unknown  205s 416ms/step - loss: 1.1728 - sparse_categorical_accuracy: 0.5479


488/Unknown  206s 416ms/step - loss: 1.1722 - sparse_categorical_accuracy: 0.5481


489/Unknown  206s 416ms/step - loss: 1.1716 - sparse_categorical_accuracy: 0.5483


490/Unknown  207s 416ms/step - loss: 1.1711 - sparse_categorical_accuracy: 0.5485


491/Unknown  207s 416ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5487


492/Unknown  207s 416ms/step - loss: 1.1699 - sparse_categorical_accuracy: 0.5489


493/Unknown  208s 416ms/step - loss: 1.1693 - sparse_categorical_accuracy: 0.5491


494/Unknown  208s 416ms/step - loss: 1.1687 - sparse_categorical_accuracy: 0.5493


495/Unknown  208s 416ms/step - loss: 1.1681 - sparse_categorical_accuracy: 0.5494


496/Unknown  209s 416ms/step - loss: 1.1676 - sparse_categorical_accuracy: 0.5496


497/Unknown  209s 416ms/step - loss: 1.1670 - sparse_categorical_accuracy: 0.5498


498/Unknown  210s 416ms/step - loss: 1.1664 - sparse_categorical_accuracy: 0.5500


499/Unknown  210s 415ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5502


500/Unknown  210s 415ms/step - loss: 1.1652 - sparse_categorical_accuracy: 0.5504


501/Unknown  211s 415ms/step - loss: 1.1647 - sparse_categorical_accuracy: 0.5506


502/Unknown  211s 415ms/step - loss: 1.1641 - sparse_categorical_accuracy: 0.5508


503/Unknown  212s 415ms/step - loss: 1.1635 - sparse_categorical_accuracy: 0.5509


504/Unknown  212s 415ms/step - loss: 1.1630 - sparse_categorical_accuracy: 0.5511


505/Unknown  212s 415ms/step - loss: 1.1624 - sparse_categorical_accuracy: 0.5513


506/Unknown  213s 415ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5515


507/Unknown  213s 416ms/step - loss: 1.1613 - sparse_categorical_accuracy: 0.5517


508/Unknown  214s 416ms/step - loss: 1.1607 - sparse_categorical_accuracy: 0.5519


509/Unknown  214s 416ms/step - loss: 1.1601 - sparse_categorical_accuracy: 0.5521


510/Unknown  215s 416ms/step - loss: 1.1596 - sparse_categorical_accuracy: 0.5522


511/Unknown  215s 416ms/step - loss: 1.1590 - sparse_categorical_accuracy: 0.5524


512/Unknown  216s 416ms/step - loss: 1.1585 - sparse_categorical_accuracy: 0.5526


513/Unknown  216s 415ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5528


514/Unknown  216s 415ms/step - loss: 1.1574 - sparse_categorical_accuracy: 0.5530


515/Unknown  217s 415ms/step - loss: 1.1568 - sparse_categorical_accuracy: 0.5531


516/Unknown  217s 415ms/step - loss: 1.1562 - sparse_categorical_accuracy: 0.5533


517/Unknown  217s 415ms/step - loss: 1.1557 - sparse_categorical_accuracy: 0.5535


518/Unknown  218s 415ms/step - loss: 1.1551 - sparse_categorical_accuracy: 0.5537


519/Unknown  218s 415ms/step - loss: 1.1546 - sparse_categorical_accuracy: 0.5539


520/Unknown  218s 415ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5540


521/Unknown  219s 415ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5542


522/Unknown  219s 415ms/step - loss: 1.1530 - sparse_categorical_accuracy: 0.5544


523/Unknown  219s 414ms/step - loss: 1.1524 - sparse_categorical_accuracy: 0.5546


524/Unknown  220s 415ms/step - loss: 1.1519 - sparse_categorical_accuracy: 0.5548


525/Unknown  220s 415ms/step - loss: 1.1513 - sparse_categorical_accuracy: 0.5549


526/Unknown  221s 415ms/step - loss: 1.1508 - sparse_categorical_accuracy: 0.5551


527/Unknown  221s 415ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5553


528/Unknown  222s 415ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5555


529/Unknown  222s 415ms/step - loss: 1.1492 - sparse_categorical_accuracy: 0.5556


530/Unknown  223s 415ms/step - loss: 1.1487 - sparse_categorical_accuracy: 0.5558


531/Unknown  223s 415ms/step - loss: 1.1481 - sparse_categorical_accuracy: 0.5560


532/Unknown  223s 415ms/step - loss: 1.1476 - sparse_categorical_accuracy: 0.5562


533/Unknown  224s 415ms/step - loss: 1.1471 - sparse_categorical_accuracy: 0.5563


534/Unknown  224s 415ms/step - loss: 1.1465 - sparse_categorical_accuracy: 0.5565


535/Unknown  225s 415ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5567


536/Unknown  225s 415ms/step - loss: 1.1455 - sparse_categorical_accuracy: 0.5569


537/Unknown  226s 415ms/step - loss: 1.1450 - sparse_categorical_accuracy: 0.5570


538/Unknown  226s 415ms/step - loss: 1.1444 - sparse_categorical_accuracy: 0.5572


539/Unknown  227s 415ms/step - loss: 1.1439 - sparse_categorical_accuracy: 0.5574


540/Unknown  227s 415ms/step - loss: 1.1434 - sparse_categorical_accuracy: 0.5575


541/Unknown  227s 415ms/step - loss: 1.1429 - sparse_categorical_accuracy: 0.5577


542/Unknown  228s 415ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5579


543/Unknown  228s 415ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5581


544/Unknown  228s 415ms/step - loss: 1.1413 - sparse_categorical_accuracy: 0.5582


545/Unknown  229s 415ms/step - loss: 1.1408 - sparse_categorical_accuracy: 0.5584


546/Unknown  229s 415ms/step - loss: 1.1403 - sparse_categorical_accuracy: 0.5586


547/Unknown  230s 415ms/step - loss: 1.1398 - sparse_categorical_accuracy: 0.5587


548/Unknown  230s 415ms/step - loss: 1.1393 - sparse_categorical_accuracy: 0.5589


549/Unknown  230s 415ms/step - loss: 1.1388 - sparse_categorical_accuracy: 0.5591


550/Unknown  231s 415ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5592


551/Unknown  231s 415ms/step - loss: 1.1378 - sparse_categorical_accuracy: 0.5594


552/Unknown  232s 415ms/step - loss: 1.1373 - sparse_categorical_accuracy: 0.5596


553/Unknown  232s 414ms/step - loss: 1.1368 - sparse_categorical_accuracy: 0.5597


554/Unknown  232s 414ms/step - loss: 1.1362 - sparse_categorical_accuracy: 0.5599


555/Unknown  233s 414ms/step - loss: 1.1357 - sparse_categorical_accuracy: 0.5601


556/Unknown  233s 414ms/step - loss: 1.1352 - sparse_categorical_accuracy: 0.5602


557/Unknown  233s 414ms/step - loss: 1.1347 - sparse_categorical_accuracy: 0.5604


558/Unknown  234s 414ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5605


559/Unknown  234s 415ms/step - loss: 1.1338 - sparse_categorical_accuracy: 0.5607


560/Unknown  235s 415ms/step - loss: 1.1333 - sparse_categorical_accuracy: 0.5609


561/Unknown  235s 415ms/step - loss: 1.1328 - sparse_categorical_accuracy: 0.5610


562/Unknown  236s 415ms/step - loss: 1.1323 - sparse_categorical_accuracy: 0.5612


563/Unknown  236s 415ms/step - loss: 1.1318 - sparse_categorical_accuracy: 0.5614


564/Unknown  237s 415ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5615


565/Unknown  237s 415ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5617


566/Unknown  238s 415ms/step - loss: 1.1303 - sparse_categorical_accuracy: 0.5618


567/Unknown  238s 415ms/step - loss: 1.1298 - sparse_categorical_accuracy: 0.5620


568/Unknown  238s 415ms/step - loss: 1.1293 - sparse_categorical_accuracy: 0.5622


569/Unknown  239s 415ms/step - loss: 1.1288 - sparse_categorical_accuracy: 0.5623


570/Unknown  239s 415ms/step - loss: 1.1284 - sparse_categorical_accuracy: 0.5625


571/Unknown  240s 415ms/step - loss: 1.1279 - sparse_categorical_accuracy: 0.5626


572/Unknown  240s 415ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5628


573/Unknown  240s 415ms/step - loss: 1.1269 - sparse_categorical_accuracy: 0.5630


574/Unknown  241s 415ms/step - loss: 1.1264 - sparse_categorical_accuracy: 0.5631


575/Unknown  241s 415ms/step - loss: 1.1260 - sparse_categorical_accuracy: 0.5633


576/Unknown  241s 414ms/step - loss: 1.1255 - sparse_categorical_accuracy: 0.5634


577/Unknown  242s 414ms/step - loss: 1.1250 - sparse_categorical_accuracy: 0.5636


578/Unknown  242s 414ms/step - loss: 1.1245 - sparse_categorical_accuracy: 0.5638


579/Unknown  242s 414ms/step - loss: 1.1240 - sparse_categorical_accuracy: 0.5639


580/Unknown  243s 414ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5641


581/Unknown  243s 414ms/step - loss: 1.1231 - sparse_categorical_accuracy: 0.5642


582/Unknown  243s 413ms/step - loss: 1.1226 - sparse_categorical_accuracy: 0.5644


583/Unknown  244s 413ms/step - loss: 1.1222 - sparse_categorical_accuracy: 0.5645


584/Unknown  244s 413ms/step - loss: 1.1217 - sparse_categorical_accuracy: 0.5647


585/Unknown  244s 413ms/step - loss: 1.1212 - sparse_categorical_accuracy: 0.5648


586/Unknown  245s 413ms/step - loss: 1.1207 - sparse_categorical_accuracy: 0.5650


587/Unknown  245s 413ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5651


588/Unknown  246s 413ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5653


589/Unknown  246s 413ms/step - loss: 1.1194 - sparse_categorical_accuracy: 0.5655


590/Unknown  246s 413ms/step - loss: 1.1189 - sparse_categorical_accuracy: 0.5656


591/Unknown  247s 413ms/step - loss: 1.1184 - sparse_categorical_accuracy: 0.5658


592/Unknown  247s 413ms/step - loss: 1.1180 - sparse_categorical_accuracy: 0.5659


593/Unknown  248s 413ms/step - loss: 1.1175 - sparse_categorical_accuracy: 0.5661


594/Unknown  248s 413ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5662


595/Unknown  248s 413ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5664


596/Unknown  249s 413ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5665


597/Unknown  249s 413ms/step - loss: 1.1157 - sparse_categorical_accuracy: 0.5667


598/Unknown  249s 413ms/step - loss: 1.1152 - sparse_categorical_accuracy: 0.5668


599/Unknown  250s 413ms/step - loss: 1.1148 - sparse_categorical_accuracy: 0.5670


600/Unknown  250s 413ms/step - loss: 1.1143 - sparse_categorical_accuracy: 0.5671


601/Unknown  251s 412ms/step - loss: 1.1139 - sparse_categorical_accuracy: 0.5673


602/Unknown  251s 412ms/step - loss: 1.1134 - sparse_categorical_accuracy: 0.5674


603/Unknown  251s 412ms/step - loss: 1.1130 - sparse_categorical_accuracy: 0.5676


604/Unknown  252s 412ms/step - loss: 1.1125 - sparse_categorical_accuracy: 0.5677


605/Unknown  252s 412ms/step - loss: 1.1121 - sparse_categorical_accuracy: 0.5679


606/Unknown  252s 412ms/step - loss: 1.1116 - sparse_categorical_accuracy: 0.5680


607/Unknown  253s 412ms/step - loss: 1.1112 - sparse_categorical_accuracy: 0.5682


608/Unknown  253s 412ms/step - loss: 1.1107 - sparse_categorical_accuracy: 0.5683


609/Unknown  254s 412ms/step - loss: 1.1103 - sparse_categorical_accuracy: 0.5685


610/Unknown  254s 412ms/step - loss: 1.1098 - sparse_categorical_accuracy: 0.5686


611/Unknown  255s 412ms/step - loss: 1.1094 - sparse_categorical_accuracy: 0.5687


612/Unknown  255s 412ms/step - loss: 1.1090 - sparse_categorical_accuracy: 0.5689


613/Unknown  255s 412ms/step - loss: 1.1085 - sparse_categorical_accuracy: 0.5690


614/Unknown  256s 412ms/step - loss: 1.1081 - sparse_categorical_accuracy: 0.5692


615/Unknown  256s 412ms/step - loss: 1.1076 - sparse_categorical_accuracy: 0.5693


616/Unknown  257s 413ms/step - loss: 1.1072 - sparse_categorical_accuracy: 0.5695


617/Unknown  257s 413ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5696


618/Unknown  258s 413ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5698


619/Unknown  258s 413ms/step - loss: 1.1059 - sparse_categorical_accuracy: 0.5699


620/Unknown  259s 413ms/step - loss: 1.1055 - sparse_categorical_accuracy: 0.5700


621/Unknown  259s 413ms/step - loss: 1.1050 - sparse_categorical_accuracy: 0.5702


622/Unknown  260s 413ms/step - loss: 1.1046 - sparse_categorical_accuracy: 0.5703


623/Unknown  260s 413ms/step - loss: 1.1042 - sparse_categorical_accuracy: 0.5705


624/Unknown  261s 413ms/step - loss: 1.1037 - sparse_categorical_accuracy: 0.5706


625/Unknown  261s 413ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5708


626/Unknown  261s 413ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5709


627/Unknown  262s 413ms/step - loss: 1.1025 - sparse_categorical_accuracy: 0.5710


628/Unknown  262s 413ms/step - loss: 1.1020 - sparse_categorical_accuracy: 0.5712


629/Unknown  263s 413ms/step - loss: 1.1016 - sparse_categorical_accuracy: 0.5713


630/Unknown  263s 414ms/step - loss: 1.1012 - sparse_categorical_accuracy: 0.5715


631/Unknown  264s 414ms/step - loss: 1.1008 - sparse_categorical_accuracy: 0.5716


632/Unknown  264s 414ms/step - loss: 1.1003 - sparse_categorical_accuracy: 0.5717


633/Unknown  265s 414ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5719


634/Unknown  265s 414ms/step - loss: 1.0995 - sparse_categorical_accuracy: 0.5720


635/Unknown  265s 413ms/step - loss: 1.0991 - sparse_categorical_accuracy: 0.5722


636/Unknown  266s 413ms/step - loss: 1.0987 - sparse_categorical_accuracy: 0.5723


637/Unknown  266s 413ms/step - loss: 1.0982 - sparse_categorical_accuracy: 0.5724


638/Unknown  266s 413ms/step - loss: 1.0978 - sparse_categorical_accuracy: 0.5726


639/Unknown  267s 413ms/step - loss: 1.0974 - sparse_categorical_accuracy: 0.5727


640/Unknown  267s 413ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5728


641/Unknown  268s 413ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5730


642/Unknown  268s 413ms/step - loss: 1.0962 - sparse_categorical_accuracy: 0.5731


643/Unknown  268s 413ms/step - loss: 1.0957 - sparse_categorical_accuracy: 0.5733


644/Unknown  269s 413ms/step - loss: 1.0953 - sparse_categorical_accuracy: 0.5734


645/Unknown  269s 413ms/step - loss: 1.0949 - sparse_categorical_accuracy: 0.5735


646/Unknown  269s 413ms/step - loss: 1.0945 - sparse_categorical_accuracy: 0.5737


647/Unknown  270s 413ms/step - loss: 1.0941 - sparse_categorical_accuracy: 0.5738


648/Unknown  270s 413ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5739


649/Unknown  270s 413ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5741


650/Unknown  271s 413ms/step - loss: 1.0929 - sparse_categorical_accuracy: 0.5742


651/Unknown  271s 413ms/step - loss: 1.0925 - sparse_categorical_accuracy: 0.5743


652/Unknown  272s 412ms/step - loss: 1.0921 - sparse_categorical_accuracy: 0.5745


653/Unknown  272s 412ms/step - loss: 1.0917 - sparse_categorical_accuracy: 0.5746


654/Unknown  272s 412ms/step - loss: 1.0913 - sparse_categorical_accuracy: 0.5747


655/Unknown  273s 412ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5749


656/Unknown  273s 412ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5750


657/Unknown  274s 413ms/step - loss: 1.0901 - sparse_categorical_accuracy: 0.5751


658/Unknown  274s 413ms/step - loss: 1.0897 - sparse_categorical_accuracy: 0.5753


659/Unknown  275s 413ms/step - loss: 1.0893 - sparse_categorical_accuracy: 0.5754


660/Unknown  275s 413ms/step - loss: 1.0889 - sparse_categorical_accuracy: 0.5755


661/Unknown  275s 413ms/step - loss: 1.0885 - sparse_categorical_accuracy: 0.5757


662/Unknown  276s 413ms/step - loss: 1.0881 - sparse_categorical_accuracy: 0.5758


663/Unknown  276s 413ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5759


664/Unknown  277s 413ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5760


665/Unknown  277s 413ms/step - loss: 1.0869 - sparse_categorical_accuracy: 0.5762


666/Unknown  278s 413ms/step - loss: 1.0865 - sparse_categorical_accuracy: 0.5763


667/Unknown  278s 413ms/step - loss: 1.0861 - sparse_categorical_accuracy: 0.5764


668/Unknown  279s 413ms/step - loss: 1.0857 - sparse_categorical_accuracy: 0.5766


669/Unknown  279s 413ms/step - loss: 1.0853 - sparse_categorical_accuracy: 0.5767


670/Unknown  279s 413ms/step - loss: 1.0849 - sparse_categorical_accuracy: 0.5768


671/Unknown  280s 413ms/step - loss: 1.0845 - sparse_categorical_accuracy: 0.5770


672/Unknown  280s 413ms/step - loss: 1.0842 - sparse_categorical_accuracy: 0.5771


673/Unknown  281s 413ms/step - loss: 1.0838 - sparse_categorical_accuracy: 0.5772


674/Unknown  281s 413ms/step - loss: 1.0834 - sparse_categorical_accuracy: 0.5773


675/Unknown  281s 413ms/step - loss: 1.0830 - sparse_categorical_accuracy: 0.5775


676/Unknown  282s 413ms/step - loss: 1.0826 - sparse_categorical_accuracy: 0.5776


677/Unknown  282s 413ms/step - loss: 1.0822 - sparse_categorical_accuracy: 0.5777


678/Unknown  282s 412ms/step - loss: 1.0818 - sparse_categorical_accuracy: 0.5778


679/Unknown  283s 412ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5780


680/Unknown  283s 412ms/step - loss: 1.0811 - sparse_categorical_accuracy: 0.5781


681/Unknown  284s 412ms/step - loss: 1.0807 - sparse_categorical_accuracy: 0.5782


682/Unknown  284s 412ms/step - loss: 1.0803 - sparse_categorical_accuracy: 0.5783


683/Unknown  284s 412ms/step - loss: 1.0799 - sparse_categorical_accuracy: 0.5785


684/Unknown  285s 412ms/step - loss: 1.0796 - sparse_categorical_accuracy: 0.5786


685/Unknown  285s 412ms/step - loss: 1.0792 - sparse_categorical_accuracy: 0.5787


686/Unknown  286s 412ms/step - loss: 1.0788 - sparse_categorical_accuracy: 0.5788


687/Unknown  286s 412ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5790


688/Unknown  287s 413ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5791


689/Unknown  287s 413ms/step - loss: 1.0777 - sparse_categorical_accuracy: 0.5792


690/Unknown  287s 413ms/step - loss: 1.0773 - sparse_categorical_accuracy: 0.5793


691/Unknown  288s 413ms/step - loss: 1.0769 - sparse_categorical_accuracy: 0.5795


692/Unknown  288s 413ms/step - loss: 1.0765 - sparse_categorical_accuracy: 0.5796


693/Unknown  289s 413ms/step - loss: 1.0762 - sparse_categorical_accuracy: 0.5797


694/Unknown  289s 413ms/step - loss: 1.0758 - sparse_categorical_accuracy: 0.5798


695/Unknown  290s 413ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5800


696/Unknown  290s 413ms/step - loss: 1.0751 - sparse_categorical_accuracy: 0.5801


697/Unknown  291s 413ms/step - loss: 1.0747 - sparse_categorical_accuracy: 0.5802


698/Unknown  291s 413ms/step - loss: 1.0743 - sparse_categorical_accuracy: 0.5803


699/Unknown  292s 413ms/step - loss: 1.0740 - sparse_categorical_accuracy: 0.5804


700/Unknown  292s 413ms/step - loss: 1.0736 - sparse_categorical_accuracy: 0.5806


701/Unknown  292s 413ms/step - loss: 1.0732 - sparse_categorical_accuracy: 0.5807


702/Unknown  293s 413ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5808


703/Unknown  293s 413ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5809


704/Unknown  294s 413ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5810


705/Unknown  294s 413ms/step - loss: 1.0718 - sparse_categorical_accuracy: 0.5812


706/Unknown  295s 413ms/step - loss: 1.0714 - sparse_categorical_accuracy: 0.5813


707/Unknown  295s 413ms/step - loss: 1.0710 - sparse_categorical_accuracy: 0.5814


708/Unknown  295s 413ms/step - loss: 1.0707 - sparse_categorical_accuracy: 0.5815


709/Unknown  296s 413ms/step - loss: 1.0703 - sparse_categorical_accuracy: 0.5816


710/Unknown  296s 413ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5818


711/Unknown  296s 413ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5819


712/Unknown  297s 413ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5820


713/Unknown  297s 413ms/step - loss: 1.0689 - sparse_categorical_accuracy: 0.5821


714/Unknown  298s 413ms/step - loss: 1.0685 - sparse_categorical_accuracy: 0.5822


715/Unknown  298s 413ms/step - loss: 1.0682 - sparse_categorical_accuracy: 0.5824


716/Unknown  298s 413ms/step - loss: 1.0678 - sparse_categorical_accuracy: 0.5825


717/Unknown  299s 413ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5826


718/Unknown  299s 413ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5827


719/Unknown  300s 413ms/step - loss: 1.0668 - sparse_categorical_accuracy: 0.5828


720/Unknown  300s 413ms/step - loss: 1.0664 - sparse_categorical_accuracy: 0.5829


721/Unknown  300s 413ms/step - loss: 1.0661 - sparse_categorical_accuracy: 0.5831


722/Unknown  301s 413ms/step - loss: 1.0657 - sparse_categorical_accuracy: 0.5832


723/Unknown  301s 413ms/step - loss: 1.0653 - sparse_categorical_accuracy: 0.5833


724/Unknown  301s 413ms/step - loss: 1.0650 - sparse_categorical_accuracy: 0.5834


725/Unknown  302s 413ms/step - loss: 1.0646 - sparse_categorical_accuracy: 0.5835


726/Unknown  302s 413ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5836


727/Unknown  303s 413ms/step - loss: 1.0640 - sparse_categorical_accuracy: 0.5837


728/Unknown  303s 413ms/step - loss: 1.0636 - sparse_categorical_accuracy: 0.5839


729/Unknown  304s 413ms/step - loss: 1.0633 - sparse_categorical_accuracy: 0.5840


730/Unknown  304s 413ms/step - loss: 1.0629 - sparse_categorical_accuracy: 0.5841


731/Unknown  305s 413ms/step - loss: 1.0626 - sparse_categorical_accuracy: 0.5842


732/Unknown  305s 413ms/step - loss: 1.0622 - sparse_categorical_accuracy: 0.5843


733/Unknown  305s 413ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5844


734/Unknown  306s 413ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5845


735/Unknown  306s 413ms/step - loss: 1.0612 - sparse_categorical_accuracy: 0.5847


736/Unknown  307s 413ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5848


737/Unknown  307s 413ms/step - loss: 1.0605 - sparse_categorical_accuracy: 0.5849


738/Unknown  308s 413ms/step - loss: 1.0602 - sparse_categorical_accuracy: 0.5850


739/Unknown  308s 414ms/step - loss: 1.0598 - sparse_categorical_accuracy: 0.5851


740/Unknown  309s 414ms/step - loss: 1.0595 - sparse_categorical_accuracy: 0.5852


741/Unknown  309s 414ms/step - loss: 1.0591 - sparse_categorical_accuracy: 0.5853


742/Unknown  310s 414ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5854


743/Unknown  310s 414ms/step - loss: 1.0585 - sparse_categorical_accuracy: 0.5856


744/Unknown  310s 414ms/step - loss: 1.0581 - sparse_categorical_accuracy: 0.5857


745/Unknown  311s 414ms/step - loss: 1.0578 - sparse_categorical_accuracy: 0.5858


746/Unknown  311s 413ms/step - loss: 1.0575 - sparse_categorical_accuracy: 0.5859


747/Unknown  312s 413ms/step - loss: 1.0571 - sparse_categorical_accuracy: 0.5860


748/Unknown  312s 413ms/step - loss: 1.0568 - sparse_categorical_accuracy: 0.5861


749/Unknown  312s 413ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5862


750/Unknown  313s 413ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5863


751/Unknown  313s 413ms/step - loss: 1.0558 - sparse_categorical_accuracy: 0.5864


752/Unknown  313s 413ms/step - loss: 1.0555 - sparse_categorical_accuracy: 0.5866


753/Unknown  314s 413ms/step - loss: 1.0551 - sparse_categorical_accuracy: 0.5867


754/Unknown  314s 413ms/step - loss: 1.0548 - sparse_categorical_accuracy: 0.5868


755/Unknown  314s 413ms/step - loss: 1.0545 - sparse_categorical_accuracy: 0.5869


756/Unknown  315s 413ms/step - loss: 1.0541 - sparse_categorical_accuracy: 0.5870


757/Unknown  315s 413ms/step - loss: 1.0538 - sparse_categorical_accuracy: 0.5871


758/Unknown  316s 413ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5872


759/Unknown  316s 413ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5873


760/Unknown  317s 413ms/step - loss: 1.0528 - sparse_categorical_accuracy: 0.5874


761/Unknown  317s 413ms/step - loss: 1.0525 - sparse_categorical_accuracy: 0.5875


762/Unknown  318s 413ms/step - loss: 1.0522 - sparse_categorical_accuracy: 0.5876


763/Unknown  318s 413ms/step - loss: 1.0518 - sparse_categorical_accuracy: 0.5877


764/Unknown  319s 413ms/step - loss: 1.0515 - sparse_categorical_accuracy: 0.5879


765/Unknown  319s 413ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.5880


766/Unknown  319s 413ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.5881


767/Unknown  320s 414ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.5882


768/Unknown  320s 414ms/step - loss: 1.0502 - sparse_categorical_accuracy: 0.5883


769/Unknown  321s 414ms/step - loss: 1.0499 - sparse_categorical_accuracy: 0.5884


770/Unknown  321s 414ms/step - loss: 1.0496 - sparse_categorical_accuracy: 0.5885


771/Unknown  322s 414ms/step - loss: 1.0493 - sparse_categorical_accuracy: 0.5886


772/Unknown  322s 414ms/step - loss: 1.0489 - sparse_categorical_accuracy: 0.5887


773/Unknown  322s 414ms/step - loss: 1.0486 - sparse_categorical_accuracy: 0.5888


774/Unknown  323s 414ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.5889


775/Unknown  323s 413ms/step - loss: 1.0480 - sparse_categorical_accuracy: 0.5890


776/Unknown  323s 413ms/step - loss: 1.0477 - sparse_categorical_accuracy: 0.5891


777/Unknown  324s 413ms/step - loss: 1.0473 - sparse_categorical_accuracy: 0.5892


778/Unknown  324s 413ms/step - loss: 1.0470 - sparse_categorical_accuracy: 0.5893


779/Unknown  325s 413ms/step - loss: 1.0467 - sparse_categorical_accuracy: 0.5894


780/Unknown  325s 413ms/step - loss: 1.0464 - sparse_categorical_accuracy: 0.5895


781/Unknown  325s 413ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.5896


782/Unknown  326s 413ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.5898


783/Unknown  326s 413ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.5899


784/Unknown  327s 413ms/step - loss: 1.0451 - sparse_categorical_accuracy: 0.5900


785/Unknown  327s 413ms/step - loss: 1.0448 - sparse_categorical_accuracy: 0.5901


786/Unknown  327s 413ms/step - loss: 1.0445 - sparse_categorical_accuracy: 0.5902


787/Unknown  328s 413ms/step - loss: 1.0442 - sparse_categorical_accuracy: 0.5903


788/Unknown  328s 413ms/step - loss: 1.0439 - sparse_categorical_accuracy: 0.5904


789/Unknown  329s 413ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.5905


790/Unknown  329s 413ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.5906


791/Unknown  330s 413ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.5907


792/Unknown  330s 413ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.5908


793/Unknown  331s 413ms/step - loss: 1.0423 - sparse_categorical_accuracy: 0.5909


794/Unknown  331s 414ms/step - loss: 1.0420 - sparse_categorical_accuracy: 0.5910


795/Unknown  331s 414ms/step - loss: 1.0417 - sparse_categorical_accuracy: 0.5911


796/Unknown  332s 414ms/step - loss: 1.0414 - sparse_categorical_accuracy: 0.5912


797/Unknown  332s 414ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.5913


798/Unknown  333s 414ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.5914


799/Unknown  333s 413ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.5915


800/Unknown  334s 414ms/step - loss: 1.0402 - sparse_categorical_accuracy: 0.5916


801/Unknown  334s 414ms/step - loss: 1.0399 - sparse_categorical_accuracy: 0.5917


802/Unknown  334s 414ms/step - loss: 1.0396 - sparse_categorical_accuracy: 0.5918


803/Unknown  335s 414ms/step - loss: 1.0393 - sparse_categorical_accuracy: 0.5919


804/Unknown  335s 413ms/step - loss: 1.0390 - sparse_categorical_accuracy: 0.5920


805/Unknown  335s 413ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.5921


806/Unknown  336s 413ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.5922


807/Unknown  336s 413ms/step - loss: 1.0381 - sparse_categorical_accuracy: 0.5923


808/Unknown  336s 413ms/step - loss: 1.0378 - sparse_categorical_accuracy: 0.5924


809/Unknown  337s 413ms/step - loss: 1.0375 - sparse_categorical_accuracy: 0.5925


810/Unknown  337s 413ms/step - loss: 1.0372 - sparse_categorical_accuracy: 0.5926


811/Unknown  338s 413ms/step - loss: 1.0369 - sparse_categorical_accuracy: 0.5927


812/Unknown  338s 413ms/step - loss: 1.0366 - sparse_categorical_accuracy: 0.5928


813/Unknown  338s 413ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.5929


814/Unknown  339s 413ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.5930


815/Unknown  339s 413ms/step - loss: 1.0357 - sparse_categorical_accuracy: 0.5931


816/Unknown  339s 413ms/step - loss: 1.0354 - sparse_categorical_accuracy: 0.5932


817/Unknown  340s 413ms/step - loss: 1.0351 - sparse_categorical_accuracy: 0.5933


818/Unknown  340s 413ms/step - loss: 1.0348 - sparse_categorical_accuracy: 0.5934


819/Unknown  341s 413ms/step - loss: 1.0345 - sparse_categorical_accuracy: 0.5935


820/Unknown  341s 412ms/step - loss: 1.0342 - sparse_categorical_accuracy: 0.5936


821/Unknown  341s 412ms/step - loss: 1.0339 - sparse_categorical_accuracy: 0.5937


822/Unknown  342s 412ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.5938


823/Unknown  342s 412ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.5939


824/Unknown  343s 412ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.5939


825/Unknown  343s 412ms/step - loss: 1.0327 - sparse_categorical_accuracy: 0.5940


826/Unknown  343s 412ms/step - loss: 1.0324 - sparse_categorical_accuracy: 0.5941


827/Unknown  344s 412ms/step - loss: 1.0322 - sparse_categorical_accuracy: 0.5942


828/Unknown  344s 412ms/step - loss: 1.0319 - sparse_categorical_accuracy: 0.5943


829/Unknown  344s 412ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.5944


830/Unknown  345s 412ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.5945


831/Unknown  345s 412ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.5946


832/Unknown  346s 412ms/step - loss: 1.0307 - sparse_categorical_accuracy: 0.5947


833/Unknown  346s 412ms/step - loss: 1.0304 - sparse_categorical_accuracy: 0.5948


834/Unknown  346s 412ms/step - loss: 1.0301 - sparse_categorical_accuracy: 0.5949


835/Unknown  347s 412ms/step - loss: 1.0298 - sparse_categorical_accuracy: 0.5950


836/Unknown  347s 412ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.5951


837/Unknown  348s 412ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.5952


838/Unknown  348s 412ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.5953


839/Unknown  348s 412ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.5954


840/Unknown  349s 412ms/step - loss: 1.0284 - sparse_categorical_accuracy: 0.5955


841/Unknown  349s 412ms/step - loss: 1.0281 - sparse_categorical_accuracy: 0.5956


842/Unknown  350s 412ms/step - loss: 1.0278 - sparse_categorical_accuracy: 0.5957


843/Unknown  350s 412ms/step - loss: 1.0276 - sparse_categorical_accuracy: 0.5958


844/Unknown  351s 412ms/step - loss: 1.0273 - sparse_categorical_accuracy: 0.5958


845/Unknown  351s 412ms/step - loss: 1.0270 - sparse_categorical_accuracy: 0.5959


846/Unknown  352s 412ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.5960


847/Unknown  352s 412ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.5961


848/Unknown  352s 412ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.5962


849/Unknown  353s 412ms/step - loss: 1.0259 - sparse_categorical_accuracy: 0.5963


850/Unknown  353s 412ms/step - loss: 1.0256 - sparse_categorical_accuracy: 0.5964


851/Unknown  354s 412ms/step - loss: 1.0253 - sparse_categorical_accuracy: 0.5965


852/Unknown  354s 412ms/step - loss: 1.0250 - sparse_categorical_accuracy: 0.5966


853/Unknown  354s 412ms/step - loss: 1.0247 - sparse_categorical_accuracy: 0.5967


854/Unknown  355s 412ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.5968


855/Unknown  355s 412ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.5969


856/Unknown  355s 412ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.5970


857/Unknown  356s 412ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.5970


858/Unknown  356s 412ms/step - loss: 1.0234 - sparse_categorical_accuracy: 0.5971


859/Unknown  357s 412ms/step - loss: 1.0231 - sparse_categorical_accuracy: 0.5972


860/Unknown  357s 412ms/step - loss: 1.0228 - sparse_categorical_accuracy: 0.5973


861/Unknown  357s 412ms/step - loss: 1.0225 - sparse_categorical_accuracy: 0.5974


862/Unknown  358s 412ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.5975


863/Unknown  358s 412ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.5976


864/Unknown  359s 412ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.5977


865/Unknown  359s 412ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.5978


866/Unknown  360s 412ms/step - loss: 1.0212 - sparse_categorical_accuracy: 0.5979


867/Unknown  360s 412ms/step - loss: 1.0209 - sparse_categorical_accuracy: 0.5980


868/Unknown  361s 412ms/step - loss: 1.0206 - sparse_categorical_accuracy: 0.5980


869/Unknown  361s 412ms/step - loss: 1.0203 - sparse_categorical_accuracy: 0.5981


870/Unknown  361s 412ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.5982


871/Unknown  362s 412ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.5983


872/Unknown  362s 412ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.5984


873/Unknown  363s 412ms/step - loss: 1.0193 - sparse_categorical_accuracy: 0.5985


874/Unknown  363s 412ms/step - loss: 1.0190 - sparse_categorical_accuracy: 0.5986


875/Unknown  364s 412ms/step - loss: 1.0187 - sparse_categorical_accuracy: 0.5987


876/Unknown  364s 412ms/step - loss: 1.0184 - sparse_categorical_accuracy: 0.5988


877/Unknown  364s 412ms/step - loss: 1.0182 - sparse_categorical_accuracy: 0.5988


878/Unknown  365s 412ms/step - loss: 1.0179 - sparse_categorical_accuracy: 0.5989


879/Unknown  365s 412ms/step - loss: 1.0176 - sparse_categorical_accuracy: 0.5990


880/Unknown  365s 412ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.5991


881/Unknown  366s 412ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.5992


882/Unknown  366s 412ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.5993


883/Unknown  367s 412ms/step - loss: 1.0166 - sparse_categorical_accuracy: 0.5994


884/Unknown  367s 412ms/step - loss: 1.0163 - sparse_categorical_accuracy: 0.5995


885/Unknown  367s 412ms/step - loss: 1.0160 - sparse_categorical_accuracy: 0.5996


886/Unknown  368s 412ms/step - loss: 1.0158 - sparse_categorical_accuracy: 0.5996


887/Unknown  368s 412ms/step - loss: 1.0155 - sparse_categorical_accuracy: 0.5997


888/Unknown  368s 412ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.5998


889/Unknown  369s 412ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.5999


890/Unknown  369s 412ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6000


891/Unknown  370s 412ms/step - loss: 1.0145 - sparse_categorical_accuracy: 0.6001


892/Unknown  370s 412ms/step - loss: 1.0142 - sparse_categorical_accuracy: 0.6002


893/Unknown  371s 412ms/step - loss: 1.0139 - sparse_categorical_accuracy: 0.6002


894/Unknown  371s 412ms/step - loss: 1.0137 - sparse_categorical_accuracy: 0.6003


895/Unknown  371s 412ms/step - loss: 1.0134 - sparse_categorical_accuracy: 0.6004


896/Unknown  372s 412ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6005


897/Unknown  372s 412ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6006


898/Unknown  373s 412ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6007


899/Unknown  373s 412ms/step - loss: 1.0124 - sparse_categorical_accuracy: 0.6008


900/Unknown  373s 412ms/step - loss: 1.0121 - sparse_categorical_accuracy: 0.6008


901/Unknown  374s 412ms/step - loss: 1.0119 - sparse_categorical_accuracy: 0.6009


902/Unknown  374s 412ms/step - loss: 1.0116 - sparse_categorical_accuracy: 0.6010


903/Unknown  374s 412ms/step - loss: 1.0113 - sparse_categorical_accuracy: 0.6011


904/Unknown  375s 412ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6012


905/Unknown  375s 412ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6013


906/Unknown  376s 412ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6014


907/Unknown  376s 412ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6014


908/Unknown  376s 412ms/step - loss: 1.0101 - sparse_categorical_accuracy: 0.6015


909/Unknown  377s 411ms/step - loss: 1.0098 - sparse_categorical_accuracy: 0.6016


910/Unknown  377s 411ms/step - loss: 1.0096 - sparse_categorical_accuracy: 0.6017


911/Unknown  378s 411ms/step - loss: 1.0093 - sparse_categorical_accuracy: 0.6018


912/Unknown  378s 411ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6019


913/Unknown  378s 411ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6019


914/Unknown  379s 411ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6020


915/Unknown  379s 411ms/step - loss: 1.0083 - sparse_categorical_accuracy: 0.6021


916/Unknown  380s 412ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6022


917/Unknown  380s 412ms/step - loss: 1.0078 - sparse_categorical_accuracy: 0.6023


918/Unknown  380s 412ms/step - loss: 1.0075 - sparse_categorical_accuracy: 0.6024


919/Unknown  381s 411ms/step - loss: 1.0073 - sparse_categorical_accuracy: 0.6024


920/Unknown  381s 411ms/step - loss: 1.0070 - sparse_categorical_accuracy: 0.6025


921/Unknown  382s 411ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6026


922/Unknown  382s 411ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6027


923/Unknown  382s 411ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6028


924/Unknown  383s 411ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6029


925/Unknown  383s 411ms/step - loss: 1.0058 - sparse_categorical_accuracy: 0.6029


926/Unknown  383s 411ms/step - loss: 1.0055 - sparse_categorical_accuracy: 0.6030


927/Unknown  384s 411ms/step - loss: 1.0053 - sparse_categorical_accuracy: 0.6031


928/Unknown  384s 411ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6032


929/Unknown  384s 411ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6033


930/Unknown  385s 411ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6033


931/Unknown  385s 411ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6034


932/Unknown  386s 411ms/step - loss: 1.0041 - sparse_categorical_accuracy: 0.6035


933/Unknown  386s 411ms/step - loss: 1.0038 - sparse_categorical_accuracy: 0.6036


934/Unknown  386s 411ms/step - loss: 1.0036 - sparse_categorical_accuracy: 0.6037


935/Unknown  387s 411ms/step - loss: 1.0033 - sparse_categorical_accuracy: 0.6037


936/Unknown  387s 411ms/step - loss: 1.0031 - sparse_categorical_accuracy: 0.6038


937/Unknown  387s 411ms/step - loss: 1.0028 - sparse_categorical_accuracy: 0.6039


938/Unknown  388s 411ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6040


939/Unknown  388s 411ms/step - loss: 1.0024 - sparse_categorical_accuracy: 0.6041


940/Unknown  389s 411ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6042


941/Unknown  389s 410ms/step - loss: 1.0019 - sparse_categorical_accuracy: 0.6042


942/Unknown  389s 410ms/step - loss: 1.0016 - sparse_categorical_accuracy: 0.6043


943/Unknown  390s 411ms/step - loss: 1.0014 - sparse_categorical_accuracy: 0.6044


944/Unknown  390s 411ms/step - loss: 1.0011 - sparse_categorical_accuracy: 0.6045


945/Unknown  391s 411ms/step - loss: 1.0009 - sparse_categorical_accuracy: 0.6046


946/Unknown  391s 411ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6046


947/Unknown  392s 411ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6047


948/Unknown  392s 411ms/step - loss: 1.0002 - sparse_categorical_accuracy: 0.6048


949/Unknown  393s 411ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6049


950/Unknown  393s 411ms/step - loss: 0.9997 - sparse_categorical_accuracy: 0.6049


951/Unknown  393s 411ms/step - loss: 0.9995 - sparse_categorical_accuracy: 0.6050


952/Unknown  394s 411ms/step - loss: 0.9992 - sparse_categorical_accuracy: 0.6051


953/Unknown  394s 411ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6052


954/Unknown  394s 411ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6053


955/Unknown  395s 410ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6053


956/Unknown  395s 410ms/step - loss: 0.9983 - sparse_categorical_accuracy: 0.6054


957/Unknown  395s 410ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6055


958/Unknown  396s 410ms/step - loss: 0.9978 - sparse_categorical_accuracy: 0.6056


959/Unknown  396s 410ms/step - loss: 0.9976 - sparse_categorical_accuracy: 0.6057


960/Unknown  397s 410ms/step - loss: 0.9973 - sparse_categorical_accuracy: 0.6057


961/Unknown  397s 410ms/step - loss: 0.9971 - sparse_categorical_accuracy: 0.6058


962/Unknown  397s 410ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6059


963/Unknown  398s 410ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6060


964/Unknown  398s 410ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6060


965/Unknown  398s 410ms/step - loss: 0.9962 - sparse_categorical_accuracy: 0.6061


966/Unknown  399s 410ms/step - loss: 0.9959 - sparse_categorical_accuracy: 0.6062


967/Unknown  399s 410ms/step - loss: 0.9957 - sparse_categorical_accuracy: 0.6063


968/Unknown  400s 410ms/step - loss: 0.9955 - sparse_categorical_accuracy: 0.6064


969/Unknown  400s 410ms/step - loss: 0.9952 - sparse_categorical_accuracy: 0.6064


970/Unknown  401s 410ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6065


971/Unknown  401s 410ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6066


972/Unknown  402s 410ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6067


973/Unknown  402s 410ms/step - loss: 0.9943 - sparse_categorical_accuracy: 0.6067


974/Unknown  402s 410ms/step - loss: 0.9941 - sparse_categorical_accuracy: 0.6068


975/Unknown  403s 410ms/step - loss: 0.9938 - sparse_categorical_accuracy: 0.6069


976/Unknown  403s 410ms/step - loss: 0.9936 - sparse_categorical_accuracy: 0.6070


977/Unknown  404s 410ms/step - loss: 0.9934 - sparse_categorical_accuracy: 0.6070


978/Unknown  404s 410ms/step - loss: 0.9931 - sparse_categorical_accuracy: 0.6071


979/Unknown  404s 410ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6072


980/Unknown  405s 410ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6073


981/Unknown  405s 410ms/step - loss: 0.9925 - sparse_categorical_accuracy: 0.6073


982/Unknown  405s 410ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6074


983/Unknown  406s 410ms/step - loss: 0.9920 - sparse_categorical_accuracy: 0.6075


984/Unknown  406s 410ms/step - loss: 0.9918 - sparse_categorical_accuracy: 0.6076


985/Unknown  406s 410ms/step - loss: 0.9915 - sparse_categorical_accuracy: 0.6076


986/Unknown  407s 410ms/step - loss: 0.9913 - sparse_categorical_accuracy: 0.6077


987/Unknown  407s 410ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6078


988/Unknown  408s 410ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6079


989/Unknown  408s 410ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6079


990/Unknown  408s 410ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6080


991/Unknown  409s 410ms/step - loss: 0.9902 - sparse_categorical_accuracy: 0.6081


992/Unknown  409s 410ms/step - loss: 0.9900 - sparse_categorical_accuracy: 0.6082


993/Unknown  410s 410ms/step - loss: 0.9897 - sparse_categorical_accuracy: 0.6082


994/Unknown  410s 410ms/step - loss: 0.9895 - sparse_categorical_accuracy: 0.6083


995/Unknown  411s 410ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6084


996/Unknown  411s 410ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6085


997/Unknown  411s 410ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6085


998/Unknown  412s 410ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6086


999/Unknown  412s 410ms/step - loss: 0.9884 - sparse_categorical_accuracy: 0.6087



1000/Unknown 413秒 410毫秒/步 - 損失: 0.9882 - 稀疏類別準確度: 0.6088



1001/Unknown 413秒 410毫秒/步 - 損失: 0.9880 - 稀疏類別準確度: 0.6088



1002/Unknown 414秒 410毫秒/步 - 損失: 0.9877 - 稀疏類別準確度: 0.6089



1003/Unknown 414秒 410毫秒/步 - 損失: 0.9875 - 稀疏類別準確度: 0.6090



1004/Unknown 414秒 410毫秒/步 - 損失: 0.9873 - 稀疏類別準確度: 0.6091



1005/Unknown 415秒 410毫秒/步 - 損失: 0.9871 - 稀疏類別準確度: 0.6091



1006/Unknown 415秒 410毫秒/步 - 損失: 0.9868 - 稀疏類別準確度: 0.6092



1007/Unknown 416秒 410毫秒/步 - 損失: 0.9866 - 稀疏類別準確度: 0.6093



1008/Unknown 416秒 410毫秒/步 - 損失: 0.9864 - 稀疏類別準確度: 0.6093



1009/Unknown 416秒 410毫秒/步 - 損失: 0.9862 - 稀疏類別準確度: 0.6094



1010/Unknown 416秒 410毫秒/步 - 損失: 0.9860 - 稀疏類別準確度: 0.6095



1011/Unknown 417秒 410毫秒/步 - 損失: 0.9857 - 稀疏類別準確度: 0.6096



1012/Unknown 417秒 409毫秒/步 - 損失: 0.9855 - 稀疏類別準確度: 0.6096



1013/Unknown 417秒 409毫秒/步 - 損失: 0.9853 - 稀疏類別準確度: 0.6097



1014/Unknown 418秒 409毫秒/步 - 損失: 0.9851 - 稀疏類別準確度: 0.6098



1015/Unknown 418秒 409毫秒/步 - 損失: 0.9849 - 稀疏類別準確度: 0.6099



1016/Unknown 418秒 409毫秒/步 - 損失: 0.9847 - 稀疏類別準確度: 0.6099



1017/Unknown 419秒 409毫秒/步 - 損失: 0.9844 - 稀疏類別準確度: 0.6100



1018/Unknown 419秒 409毫秒/步 - 損失: 0.9842 - 稀疏類別準確度: 0.6101



1019/Unknown 419秒 409毫秒/步 - 損失: 0.9840 - 稀疏類別準確度: 0.6101



1020/Unknown 420秒 409毫秒/步 - 損失: 0.9838 - 稀疏類別準確度: 0.6102



1021/Unknown 420秒 409毫秒/步 - 損失: 0.9836 - 稀疏類別準確度: 0.6103



1022/Unknown 421秒 409毫秒/步 - 損失: 0.9834 - 稀疏類別準確度: 0.6104



1023/Unknown 421秒 409毫秒/步 - 損失: 0.9831 - 稀疏類別準確度: 0.6104



1024/Unknown 422秒 409毫秒/步 - 損失: 0.9829 - 稀疏類別準確度: 0.6105



1025/Unknown 422秒 409毫秒/步 - 損失: 0.9827 - 稀疏類別準確度: 0.6106



1026/Unknown 423秒 409毫秒/步 - 損失: 0.9825 - 稀疏類別準確度: 0.6106



1027/Unknown 423秒 409毫秒/步 - 損失: 0.9823 - 稀疏類別準確度: 0.6107



1028/Unknown 423秒 409毫秒/步 - 損失: 0.9821 - 稀疏類別準確度: 0.6108



1029/Unknown 424秒 409毫秒/步 - 損失: 0.9819 - 稀疏類別準確度: 0.6109



1030/Unknown 424秒 409毫秒/步 - 損失: 0.9816 - 稀疏類別準確度: 0.6109



1031/Unknown 425秒 409毫秒/步 - 損失: 0.9814 - 稀疏類別準確度: 0.6110



1032/Unknown 425秒 409毫秒/步 - 損失: 0.9812 - 稀疏類別準確度: 0.6111



1033/Unknown 425秒 409毫秒/步 - 損失: 0.9810 - 稀疏類別準確度: 0.6111



1034/Unknown 426秒 409毫秒/步 - 損失: 0.9808 - 稀疏類別準確度: 0.6112



1035/Unknown 426秒 409毫秒/步 - 損失: 0.9806 - 稀疏類別準確度: 0.6113



1036/Unknown 427秒 409毫秒/步 - 損失: 0.9804 - 稀疏類別準確度: 0.6113



1037/Unknown 427秒 409毫秒/步 - 損失: 0.9802 - 稀疏類別準確度: 0.6114



1038/Unknown 427秒 409毫秒/步 - 損失: 0.9799 - 稀疏類別準確度: 0.6115



1039/Unknown 428秒 409毫秒/步 - 損失: 0.9797 - 稀疏類別準確度: 0.6116



1040/Unknown 428秒 409毫秒/步 - 損失: 0.9795 - 稀疏類別準確度: 0.6116



1041/Unknown 428秒 409毫秒/步 - 損失: 0.9793 - 稀疏類別準確度: 0.6117



1042/Unknown 429秒 409毫秒/步 - 損失: 0.9791 - 稀疏類別準確度: 0.6118



1043/Unknown 429秒 409毫秒/步 - 損失: 0.9789 - 稀疏類別準確度: 0.6118



1044/Unknown 430秒 409毫秒/步 - 損失: 0.9787 - 稀疏類別準確度: 0.6119



1045/Unknown 430秒 409毫秒/步 - 損失: 0.9785 - 稀疏類別準確度: 0.6120



1046/Unknown 430秒 409毫秒/步 - 損失: 0.9783 - 稀疏類別準確度: 0.6120



1047/Unknown 431秒 409毫秒/步 - 損失: 0.9781 - 稀疏類別準確度: 0.6121



1048/Unknown 431秒 409毫秒/步 - 損失: 0.9779 - 稀疏類別準確度: 0.6122



1049/Unknown 432秒 409毫秒/步 - 損失: 0.9777 - 稀疏類別準確度: 0.6122



1050/Unknown 432秒 409毫秒/步 - 損失: 0.9774 - 稀疏類別準確度: 0.6123



1051/Unknown 433秒 409毫秒/步 - 損失: 0.9772 - 稀疏類別準確度: 0.6124



1052/Unknown 433秒 409毫秒/步 - 損失: 0.9770 - 稀疏類別準確度: 0.6125



1053/Unknown 433秒 409毫秒/步 - 損失: 0.9768 - 稀疏類別準確度: 0.6125



1054/Unknown 434秒 409毫秒/步 - 損失: 0.9766 - 稀疏類別準確度: 0.6126



1055/Unknown 434秒 409毫秒/步 - 損失: 0.9764 - 稀疏類別準確度: 0.6127



1056/Unknown 435秒 409毫秒/步 - 損失: 0.9762 - 稀疏類別準確度: 0.6127



1057/Unknown 435秒 409毫秒/步 - 損失: 0.9760 - 稀疏類別準確度: 0.6128



1058/Unknown 435秒 409毫秒/步 - 損失: 0.9758 - 稀疏類別準確度: 0.6129



1059/Unknown 436秒 409毫秒/步 - 損失: 0.9756 - 稀疏類別準確度: 0.6129



1060/Unknown 436秒 409毫秒/步 - 損失: 0.9754 - 稀疏類別準確度: 0.6130



1061/Unknown 436秒 409毫秒/步 - 損失: 0.9752 - 稀疏類別準確度: 0.6131



1062/Unknown 437秒 409毫秒/步 - 損失: 0.9750 - 稀疏類別準確度: 0.6131



1063/Unknown 437秒 409毫秒/步 - 損失: 0.9748 - 稀疏類別準確度: 0.6132



1064/Unknown 438秒 409毫秒/步 - 損失: 0.9746 - 稀疏類別準確度: 0.6133



1065/Unknown 438秒 409毫秒/步 - 損失: 0.9744 - 稀疏類別準確度: 0.6133



1066/Unknown 439秒 409毫秒/步 - 損失: 0.9742 - 稀疏類別準確度: 0.6134



1067/Unknown 439秒 409毫秒/步 - 損失: 0.9740 - 稀疏類別準確度: 0.6135



1068/Unknown 440秒 409毫秒/步 - 損失: 0.9738 - 稀疏類別準確度: 0.6135



1069/Unknown 440秒 409毫秒/步 - 損失: 0.9736 - 稀疏類別準確度: 0.6136



1070/Unknown 441秒 409毫秒/步 - 損失: 0.9734 - 稀疏類別準確度: 0.6137



1071/Unknown 441秒 409毫秒/步 - 損失: 0.9732 - 稀疏類別準確度: 0.6137



1072/Unknown 442秒 409毫秒/步 - 損失: 0.9730 - 稀疏類別準確度: 0.6138



1073/Unknown 442秒 409毫秒/步 - 損失: 0.9728 - 稀疏類別準確度: 0.6139



1074/Unknown 443秒 410毫秒/步 - 損失: 0.9726 - 稀疏類別準確度: 0.6139



1075/Unknown 443秒 410毫秒/步 - 損失: 0.9723 - 稀疏類別準確度: 0.6140



1076/Unknown 444秒 410毫秒/步 - 損失: 0.9721 - 稀疏類別準確度: 0.6141



1077/Unknown 444秒 410毫秒/步 - 損失: 0.9719 - 稀疏類別準確度: 0.6141



1078/Unknown 445秒 410毫秒/步 - 損失: 0.9717 - 稀疏類別準確度: 0.6142



1079/Unknown 445秒 410毫秒/步 - 損失: 0.9716 - 稀疏類別準確度: 0.6143



1080/Unknown 445秒 410毫秒/步 - 損失: 0.9714 - 稀疏類別準確度: 0.6143



1081/Unknown 446秒 410毫秒/步 - 損失: 0.9712 - 稀疏類別準確度: 0.6144



1082/Unknown 446秒 410毫秒/步 - 損失: 0.9710 - 稀疏類別準確度: 0.6145



1083/Unknown 447秒 410毫秒/步 - 損失: 0.9708 - 稀疏類別準確度: 0.6145



1084/Unknown 447秒 410毫秒/步 - 損失: 0.9706 - 稀疏類別準確度: 0.6146



1085/Unknown 448秒 410毫秒/步 - 損失: 0.9704 - 稀疏類別準確度: 0.6147



1086/Unknown 448秒 410毫秒/步 - 損失: 0.9702 - 稀疏類別準確度: 0.6147



1087/Unknown 449秒 410毫秒/步 - 損失: 0.9700 - 稀疏類別準確度: 0.6148



1088/Unknown 449秒 410毫秒/步 - 損失: 0.9698 - 稀疏類別準確度: 0.6149



1089/Unknown 449秒 410毫秒/步 - 損失: 0.9696 - 稀疏類別準確度: 0.6149



1090/Unknown 450秒 410毫秒/步 - 損失: 0.9694 - 稀疏類別準確度: 0.6150



1091/Unknown 450秒 410毫秒/步 - 損失: 0.9692 - 稀疏類別準確度: 0.6150



1092/Unknown 451秒 410毫秒/步 - 損失: 0.9690 - 稀疏類別準確度: 0.6151



1093/Unknown 451秒 411毫秒/步 - 損失: 0.9688 - 稀疏類別準確度: 0.6152



1094/Unknown 452秒 411毫秒/步 - 損失: 0.9686 - 稀疏類別準確度: 0.6152



1095/Unknown 452秒 411毫秒/步 - 損失: 0.9684 - 稀疏類別準確度: 0.6153



1096/Unknown 453秒 411毫秒/步 - 損失: 0.9682 - 稀疏類別準確度: 0.6154



1097/Unknown 453秒 411毫秒/步 - 損失: 0.9680 - 稀疏類別準確度: 0.6154



1098/Unknown 454秒 411毫秒/步 - 損失: 0.9678 - 稀疏類別準確度: 0.6155



1099/Unknown 454秒 411毫秒/步 - 損失: 0.9676 - 稀疏類別準確度: 0.6156



1100/Unknown 455秒 411毫秒/步 - 損失: 0.9674 - 稀疏類別準確度: 0.6156



1101/Unknown 455秒 411毫秒/步 - 損失: 0.9672 - 稀疏類別準確度: 0.6157



1102/Unknown 456秒 411毫秒/步 - 損失: 0.9670 - 稀疏類別準確度: 0.6158



1103/Unknown 456秒 411毫秒/步 - 損失: 0.9668 - 稀疏類別準確度: 0.6158



1104/Unknown 457秒 411毫秒/步 - 損失: 0.9667 - 稀疏類別準確度: 0.6159



1105/Unknown 457秒 411毫秒/步 - 損失: 0.9665 - 稀疏類別準確度: 0.6159



1106/Unknown 457秒 411毫秒/步 - 損失: 0.9663 - 稀疏類別準確度: 0.6160



1107/Unknown 458秒 411毫秒/步 - 損失: 0.9661 - 稀疏類別準確度: 0.6161



1108/Unknown 458秒 411毫秒/步 - 損失: 0.9659 - 稀疏類別準確度: 0.6161



1109/Unknown 459秒 411毫秒/步 - 損失: 0.9657 - 稀疏類別準確度: 0.6162



1110/Unknown 459秒 411毫秒/步 - 損失: 0.9655 - 稀疏類別準確度: 0.6163



1111/Unknown 459秒 411毫秒/步 - 損失: 0.9653 - 稀疏類別準確度: 0.6163



1112/Unknown 460秒 411毫秒/步 - 損失: 0.9651 - 稀疏類別準確度: 0.6164



1113/Unknown 460秒 411毫秒/步 - 損失: 0.9649 - 稀疏類別準確度: 0.6165



1114/Unknown 461秒 411毫秒/步 - 損失: 0.9647 - 稀疏類別準確度: 0.6165



1115/Unknown 461秒 411毫秒/步 - 損失: 0.9645 - 稀疏類別準確度: 0.6166



1116/Unknown 462秒 411毫秒/步 - 損失: 0.9644 - 稀疏類別準確度: 0.6166



1117/Unknown 462秒 412毫秒/步 - 損失: 0.9642 - 稀疏類別準確度: 0.6167



1118/Unknown 463秒 412毫秒/步 - 損失: 0.9640 - 稀疏類別準確度: 0.6168



1119/Unknown 463秒 412毫秒/步 - 損失: 0.9638 - 稀疏類別準確度: 0.6168



1120/Unknown 464秒 412毫秒/步 - 損失: 0.9636 - 稀疏類別準確度: 0.6169



1121/Unknown 464秒 412毫秒/步 - 損失: 0.9634 - 稀疏類別準確度: 0.6170



1122/Unknown 465秒 412毫秒/步 - 損失: 0.9632 - 稀疏類別準確度: 0.6170



1123/Unknown 465秒 412毫秒/步 - 損失: 0.9630 - 稀疏類別準確度: 0.6171



1124/Unknown 466秒 412毫秒/步 - 損失: 0.9628 - 稀疏類別準確度: 0.6171



1125/Unknown 466秒 412毫秒/步 - 損失: 0.9627 - 稀疏類別準確度: 0.6172



1126/Unknown 467秒 412毫秒/步 - 損失: 0.9625 - 稀疏類別準確度: 0.6173



1127/Unknown 467秒 412毫秒/步 - 損失: 0.9623 - 稀疏類別準確度: 0.6173



1128/Unknown 468秒 412毫秒/步 - 損失: 0.9621 - 稀疏類別準確度: 0.6174



1129/Unknown 468秒 412毫秒/步 - 損失: 0.9619 - 稀疏類別準確度: 0.6174



1130/Unknown 469秒 412毫秒/步 - 損失: 0.9617 - 稀疏類別準確度: 0.6175



1131/Unknown 469秒 412毫秒/步 - 損失: 0.9615 - 稀疏類別準確度: 0.6176



1132/Unknown 470秒 412毫秒/步 - 損失: 0.9614 - 稀疏類別準確度: 0.6176



1133/Unknown 470秒 412毫秒/步 - 損失: 0.9612 - 稀疏類別準確度: 0.6177



1134/Unknown 471秒 413毫秒/步 - 損失: 0.9610 - 稀疏類別準確度: 0.6178



1135/Unknown 471秒 413毫秒/步 - 損失: 0.9608 - 稀疏類別準確度: 0.6178



1136/Unknown 471秒 413毫秒/步 - 損失: 0.9606 - 稀疏類別準確度: 0.6179



1137/Unknown 472秒 413毫秒/步 - 損失: 0.9604 - 稀疏類別準確度: 0.6179



1138/Unknown 472秒 413毫秒/步 - 損失: 0.9602 - 稀疏類別準確度: 0.6180



1139/Unknown 473秒 413毫秒/步 - 損失: 0.9601 - 稀疏類別準確度: 0.6181



1140/Unknown 473秒 413毫秒/步 - 損失: 0.9599 - 稀疏類別準確度: 0.6181



1141/Unknown 474秒 413毫秒/步 - 損失: 0.9597 - 稀疏類別準確度: 0.6182



1142/Unknown 474秒 413毫秒/步 - 損失: 0.9595 - 稀疏類別準確度: 0.6182



1143/Unknown 475秒 413毫秒/步 - 損失: 0.9593 - 稀疏類別準確度: 0.6183



1144/Unknown 475秒 413毫秒/步 - 損失: 0.9591 - 稀疏類別準確度: 0.6184



1145/Unknown 476秒 413毫秒/步 - 損失: 0.9590 - 稀疏類別準確度: 0.6184



1146/Unknown 476秒 413毫秒/步 - 損失: 0.9588 - 稀疏類別準確度: 0.6185



1147/Unknown 477秒 413毫秒/步 - 損失: 0.9586 - 稀疏類別準確度: 0.6185



1148/Unknown 477秒 413毫秒/步 - 損失: 0.9584 - 稀疏類別準確度: 0.6186



1149/Unknown 478秒 413毫秒/步 - 損失: 0.9582 - 稀疏類別準確度: 0.6187



1150/Unknown 478秒 413毫秒/步 - 損失: 0.9580 - 稀疏類別準確度: 0.6187



1151/Unknown 479秒 413毫秒/步 - 損失: 0.9579 - 稀疏類別準確度: 0.6188



1152/Unknown 479秒 413毫秒/步 - 損失: 0.9577 - 稀疏類別準確度: 0.6188



1153/Unknown 479秒 413毫秒/步 - 損失: 0.9575 - 稀疏類別準確度: 0.6189



1154/Unknown 480秒 413毫秒/步 - 損失: 0.9573 - 稀疏類別準確度: 0.6190



1155/Unknown 480秒 413毫秒/步 - 損失: 0.9571 - 稀疏類別準確度: 0.6190



1156/Unknown 480秒 413毫秒/步 - 損失: 0.9570 - 稀疏類別準確度: 0.6191



1157/Unknown 481秒 413毫秒/步 - 損失: 0.9568 - 稀疏類別準確度: 0.6191



1158/Unknown 481秒 413毫秒/步 - 損失: 0.9566 - 稀疏類別準確度: 0.6192



1159/Unknown 482秒 413毫秒/步 - 損失: 0.9564 - 稀疏類別準確度: 0.6193



1160/Unknown 482秒 413毫秒/步 - 損失: 0.9562 - 稀疏類別準確度: 0.6193



1161/Unknown 482秒 413毫秒/步 - 損失: 0.9561 - 稀疏類別準確度: 0.6194



1162/Unknown 483秒 413毫秒/步 - 損失: 0.9559 - 稀疏類別準確度: 0.6194



1163/Unknown 483秒 413毫秒/步 - 損失: 0.9557 - 稀疏類別準確度: 0.6195



1164/Unknown 484秒 413毫秒/步 - 損失: 0.9555 - 稀疏類別準確度: 0.6196



1165/Unknown 484秒 413毫秒/步 - 損失: 0.9554 - 稀疏類別準確度: 0.6196



1166/Unknown 484秒 413毫秒/步 - 損失: 0.9552 - 稀疏類別準確度: 0.6197



1167/Unknown 485秒 413毫秒/步 - 損失: 0.9550 - 稀疏類別準確度: 0.6197



1168/Unknown 485秒 413毫秒/步 - 損失: 0.9548 - 稀疏類別準確度: 0.6198



1169/Unknown 486秒 413毫秒/步 - 損失: 0.9546 - 稀疏類別準確度: 0.6199



1170/Unknown 486秒 413毫秒/步 - 損失: 0.9545 - 稀疏類別準確度: 0.6199



1171/Unknown 487秒 413毫秒/步 - 損失: 0.9543 - 稀疏類別準確度: 0.6200



1172/Unknown 487秒 413毫秒/步 - 損失: 0.9541 - 稀疏類別準確度: 0.6200



1173/Unknown 488秒 413毫秒/步 - 損失: 0.9539 - 稀疏類別準確度: 0.6201



1174/Unknown 488秒 413毫秒/步 - 損失: 0.9538 - 稀疏類別準確度: 0.6201



1175/Unknown 489秒 413毫秒/步 - 損失: 0.9536 - 稀疏類別準確度: 0.6202



1176/Unknown 489秒 413毫秒/步 - 損失: 0.9534 - 稀疏類別準確度: 0.6203



1177/Unknown 489秒 413毫秒/步 - 損失: 0.9532 - 稀疏類別準確度: 0.6203



1178/Unknown 490秒 413毫秒/步 - 損失: 0.9531 - 稀疏類別準確度: 0.6204



1179/Unknown 490秒 413毫秒/步 - 損失: 0.9529 - 稀疏類別準確度: 0.6204



1180/Unknown 491秒 414毫秒/步 - 損失: 0.9527 - 稀疏類別準確度: 0.6205



1181/Unknown 491秒 414毫秒/步 - 損失: 0.9525 - 稀疏類別準確度: 0.6206



1182/Unknown 492秒 414毫秒/步 - 損失: 0.9524 - 稀疏類別準確度: 0.6206



1183/Unknown 492秒 414毫秒/步 - 損失: 0.9522 - 稀疏類別準確度: 0.6207



1184/Unknown 492秒 414毫秒/步 - 損失: 0.9520 - 稀疏類別準確度: 0.6207



1185/Unknown 493秒 414毫秒/步 - 損失: 0.9518 - 稀疏類別準確度: 0.6208



1186/Unknown 493秒 413毫秒/步 - 損失: 0.9517 - 稀疏類別準確度: 0.6208



1187/Unknown 493秒 413毫秒/步 - 損失: 0.9515 - 稀疏類別準確度: 0.6209



1188/Unknown 494秒 413毫秒/步 - 損失: 0.9513 - 稀疏類別準確度: 0.6210



1189/Unknown 494秒 413毫秒/步 - 損失: 0.9511 - 稀疏類別準確度: 0.6210



1190/Unknown 495秒 413毫秒/步 - 損失: 0.9510 - 稀疏類別準確度: 0.6211



1191/Unknown 495秒 413毫秒/步 - 損失: 0.9508 - 稀疏類別準確度: 0.6211



1192/Unknown 495秒 413毫秒/步 - 損失: 0.9506 - 稀疏類別準確度: 0.6212



1193/Unknown 496秒 413毫秒/步 - 損失: 0.9504 - 稀疏類別準確度: 0.6212



1194/Unknown 496秒 413毫秒/步 - 損失: 0.9503 - 稀疏類別準確度: 0.6213



1195/Unknown 496秒 413毫秒/步 - 損失: 0.9501 - 稀疏類別準確度: 0.6214



1196/Unknown 497秒 413毫秒/步 - 損失: 0.9499 - 稀疏類別準確度: 0.6214



1197/Unknown 497秒 413毫秒/步 - 損失: 0.9498 - 稀疏類別準確度: 0.6215



1198/Unknown 498秒 413毫秒/步 - 損失: 0.9496 - 稀疏類別準確度: 0.6215



1199/Unknown 498秒 413毫秒/步 - 損失: 0.9494 - 稀疏類別準確度: 0.6216



1200/Unknown 499秒 413毫秒/步 - 損失: 0.9492 - 稀疏類別準確度: 0.6216



1201/Unknown 499秒 413毫秒/步 - 損失: 0.9491 - 稀疏類別準確度: 0.6217



1202/Unknown 500秒 413毫秒/步 - 損失: 0.9489 - 稀疏類別準確度: 0.6218



1203/Unknown 500秒 413毫秒/步 - 損失: 0.9487 - 稀疏類別準確度: 0.6218



1204/Unknown 500秒 413毫秒/步 - 損失: 0.9486 - 稀疏類別準確度: 0.6219



1205/Unknown 501秒 413毫秒/步 - 損失: 0.9484 - 稀疏類別準確度: 0.6219



1206/Unknown 501秒 413毫秒/步 - 損失: 0.9482 - 稀疏類別準確度: 0.6220



1207/Unknown 501秒 413毫秒/步 - 損失: 0.9481 - 稀疏類別準確度: 0.6220



1208/Unknown 502秒 413毫秒/步 - 損失: 0.9479 - 稀疏類別準確度: 0.6221



1209/Unknown 502秒 413毫秒/步 - 損失: 0.9477 - 稀疏類別準確度: 0.6221



1210/Unknown 503秒 413毫秒/步 - 損失: 0.9476 - 稀疏類別準確度: 0.6222



1211/Unknown 503秒 413毫秒/步 - 損失: 0.9474 - 稀疏類別準確度: 0.6223



1212/Unknown 503秒 413毫秒/步 - 損失: 0.9472 - 稀疏類別準確度: 0.6223



1213/Unknown 504秒 413毫秒/步 - 損失: 0.9470 - 稀疏類別準確度: 0.6224



1214/Unknown 504秒 413毫秒/步 - 損失: 0.9469 - 稀疏類別準確度: 0.6224



1215/Unknown 505秒 413毫秒/步 - 損失: 0.9467 - 稀疏類別準確度: 0.6225



1216/Unknown 505秒 413毫秒/步 - 損失: 0.9465 - 稀疏類別準確度: 0.6225



1217/Unknown 506秒 413毫秒/步 - 損失: 0.9464 - 稀疏類別準確度: 0.6226



1218/Unknown 506秒 413毫秒/步 - 損失: 0.9462 - 稀疏類別準確度: 0.6226



1219/Unknown 506秒 413毫秒/步 - 損失: 0.9460 - 稀疏類別準確度: 0.6227



1220/未知 507秒 413毫秒/步 - 損失: 0.9459 - 稀疏類別準確度: 0.6228



1221/未知 507秒 413毫秒/步 - 損失: 0.9457 - 稀疏類別準確度: 0.6228



1222/未知 508秒 413毫秒/步 - 損失: 0.9455 - 稀疏類別準確度: 0.6229



1223/未知 508秒 413毫秒/步 - 損失: 0.9454 - 稀疏類別準確度: 0.6229



1224/未知 509秒 413毫秒/步 - 損失: 0.9452 - 稀疏類別準確度: 0.6230



1225/未知 509秒 413毫秒/步 - 損失: 0.9450 - 稀疏類別準確度: 0.6230



1226/未知 509秒 413毫秒/步 - 損失: 0.9449 - 稀疏類別準確度: 0.6231



1227/未知 510秒 413毫秒/步 - 損失: 0.9447 - 稀疏類別準確度: 0.6231



1228/未知 510秒 413毫秒/步 - 損失: 0.9446 - 稀疏類別準確度: 0.6232



1229/未知 511秒 413毫秒/步 - 損失: 0.9444 - 稀疏類別準確度: 0.6233



1230/未知 511秒 413毫秒/步 - 損失: 0.9442 - 稀疏類別準確度: 0.6233



1231/未知 512秒 413毫秒/步 - 損失: 0.9441 - 稀疏類別準確度: 0.6234



1232/未知 512秒 414毫秒/步 - 損失: 0.9439 - 稀疏類別準確度: 0.6234



1233/未知 513秒 414毫秒/步 - 損失: 0.9437 - 稀疏類別準確度: 0.6235



1234/未知 513秒 414毫秒/步 - 損失: 0.9436 - 稀疏類別準確度: 0.6235



1235/未知 513秒 414毫秒/步 - 損失: 0.9434 - 稀疏類別準確度: 0.6236



1236/未知 514秒 414毫秒/步 - 損失: 0.9432 - 稀疏類別準確度: 0.6236



1237/未知 514秒 414毫秒/步 - 損失: 0.9431 - 稀疏類別準確度: 0.6237



1238/未知 515秒 414毫秒/步 - 損失: 0.9429 - 稀疏類別準確度: 0.6237



1239/未知 515秒 414毫秒/步 - 損失: 0.9427 - 稀疏類別準確度: 0.6238



1240/未知 516秒 414毫秒/步 - 損失: 0.9426 - 稀疏類別準確度: 0.6239



1241/未知 516秒 414毫秒/步 - 損失: 0.9424 - 稀疏類別準確度: 0.6239



1242/未知 517秒 414毫秒/步 - 損失: 0.9423 - 稀疏類別準確度: 0.6240



1243/未知 517秒 414毫秒/步 - 損失: 0.9421 - 稀疏類別準確度: 0.6240



1244/未知 518秒 414毫秒/步 - 損失: 0.9419 - 稀疏類別準確度: 0.6241



1245/未知 518秒 414毫秒/步 - 損失: 0.9418 - 稀疏類別準確度: 0.6241



1246/未知 519秒 414毫秒/步 - 損失: 0.9416 - 稀疏類別準確度: 0.6242



1247/未知 519秒 414毫秒/步 - 損失: 0.9415 - 稀疏類別準確度: 0.6242



1248/未知 519秒 414毫秒/步 - 損失: 0.9413 - 稀疏類別準確度: 0.6243



1249/未知 520秒 414毫秒/步 - 損失: 0.9411 - 稀疏類別準確度: 0.6243



1250/未知 520秒 414毫秒/步 - 損失: 0.9410 - 稀疏類別準確度: 0.6244



1251/未知 521秒 414毫秒/步 - 損失: 0.9408 - 稀疏類別準確度: 0.6244



1252/未知 521秒 414毫秒/步 - 損失: 0.9406 - 稀疏類別準確度: 0.6245



1253/未知 521秒 414毫秒/步 - 損失: 0.9405 - 稀疏類別準確度: 0.6245



1254/未知 522秒 414毫秒/步 - 損失: 0.9403 - 稀疏類別準確度: 0.6246



1255/未知 522秒 414毫秒/步 - 損失: 0.9402 - 稀疏類別準確度: 0.6247



1256/未知 522秒 414毫秒/步 - 損失: 0.9400 - 稀疏類別準確度: 0.6247



1257/未知 523秒 414毫秒/步 - 損失: 0.9398 - 稀疏類別準確度: 0.6248



1258/未知 523秒 414毫秒/步 - 損失: 0.9397 - 稀疏類別準確度: 0.6248



1259/未知 524秒 414毫秒/步 - 損失: 0.9395 - 稀疏類別準確度: 0.6249



1260/未知 524秒 414毫秒/步 - 損失: 0.9394 - 稀疏類別準確度: 0.6249



1261/未知 524秒 414毫秒/步 - 損失: 0.9392 - 稀疏類別準確度: 0.6250



1262/未知 525秒 414毫秒/步 - 損失: 0.9391 - 稀疏類別準確度: 0.6250



1263/未知 525秒 414毫秒/步 - 損失: 0.9389 - 稀疏類別準確度: 0.6251



1264/未知 526秒 414毫秒/步 - 損失: 0.9387 - 稀疏類別準確度: 0.6251



1265/未知 526秒 414毫秒/步 - 損失: 0.9386 - 稀疏類別準確度: 0.6252



1266/未知 527秒 414毫秒/步 - 損失: 0.9384 - 稀疏類別準確度: 0.6252



1267/未知 527秒 414毫秒/步 - 損失: 0.9383 - 稀疏類別準確度: 0.6253



1268/未知 527秒 414毫秒/步 - 損失: 0.9381 - 稀疏類別準確度: 0.6253



1269/未知 528秒 414毫秒/步 - 損失: 0.9380 - 稀疏類別準確度: 0.6254



1270/未知 528秒 414毫秒/步 - 損失: 0.9378 - 稀疏類別準確度: 0.6254



1271/未知 529秒 414毫秒/步 - 損失: 0.9376 - 稀疏類別準確度: 0.6255



1272/未知 529秒 414毫秒/步 - 損失: 0.9375 - 稀疏類別準確度: 0.6255



1273/未知 530秒 414毫秒/步 - 損失: 0.9373 - 稀疏類別準確度: 0.6256



1274/未知 530秒 414毫秒/步 - 損失: 0.9372 - 稀疏類別準確度: 0.6256



1275/未知 531秒 414毫秒/步 - 損失: 0.9370 - 稀疏類別準確度: 0.6257



1276/未知 531秒 414毫秒/步 - 損失: 0.9369 - 稀疏類別準確度: 0.6257



1277/未知 532秒 414毫秒/步 - 損失: 0.9367 - 稀疏類別準確度: 0.6258



1278/未知 532秒 414毫秒/步 - 損失: 0.9365 - 稀疏類別準確度: 0.6259



1279/未知 532秒 414毫秒/步 - 損失: 0.9364 - 稀疏類別準確度: 0.6259



1280/未知 533秒 414毫秒/步 - 損失: 0.9362 - 稀疏類別準確度: 0.6260



1281/未知 533秒 414毫秒/步 - 損失: 0.9361 - 稀疏類別準確度: 0.6260



1282/未知 534秒 414毫秒/步 - 損失: 0.9359 - 稀疏類別準確度: 0.6261



1283/未知 534秒 414毫秒/步 - 損失: 0.9358 - 稀疏類別準確度: 0.6261



1284/未知 535秒 414毫秒/步 - 損失: 0.9356 - 稀疏類別準確度: 0.6262



1285/未知 535秒 414毫秒/步 - 損失: 0.9355 - 稀疏類別準確度: 0.6262



1286/未知 535秒 414毫秒/步 - 損失: 0.9353 - 稀疏類別準確度: 0.6263



1287/未知 536秒 414毫秒/步 - 損失: 0.9352 - 稀疏類別準確度: 0.6263



1288/未知 536秒 414毫秒/步 - 損失: 0.9350 - 稀疏類別準確度: 0.6264



1289/未知 537秒 414毫秒/步 - 損失: 0.9348 - 稀疏類別準確度: 0.6264



1290/未知 537秒 414毫秒/步 - 損失: 0.9347 - 稀疏類別準確度: 0.6265



1291/未知 537秒 414毫秒/步 - 損失: 0.9345 - 稀疏類別準確度: 0.6265



1292/未知 538秒 414毫秒/步 - 損失: 0.9344 - 稀疏類別準確度: 0.6266



1293/未知 538秒 414毫秒/步 - 損失: 0.9342 - 稀疏類別準確度: 0.6266



1294/未知 539秒 414毫秒/步 - 損失: 0.9341 - 稀疏類別準確度: 0.6267



1295/未知 539秒 414毫秒/步 - 損失: 0.9339 - 稀疏類別準確度: 0.6267



1296/未知 539秒 414毫秒/步 - 損失: 0.9338 - 稀疏類別準確度: 0.6268



1297/未知 540秒 414毫秒/步 - 損失: 0.9336 - 稀疏類別準確度: 0.6268



1298/未知 540秒 414毫秒/步 - 損失: 0.9335 - 稀疏類別準確度: 0.6269



1299/未知 540秒 414毫秒/步 - 損失: 0.9333 - 稀疏類別準確度: 0.6269



1300/未知 541秒 414毫秒/步 - 損失: 0.9332 - 稀疏類別準確度: 0.6270



1301/未知 541秒 414毫秒/步 - 損失: 0.9330 - 稀疏類別準確度: 0.6270



1302/未知 542秒 414毫秒/步 - 損失: 0.9329 - 稀疏類別準確度: 0.6271



1303/未知 542秒 414毫秒/步 - 損失: 0.9327 - 稀疏類別準確度: 0.6271



1304/未知 542秒 414毫秒/步 - 損失: 0.9326 - 稀疏類別準確度: 0.6272



1305/未知 543秒 414毫秒/步 - 損失: 0.9324 - 稀疏類別準確度: 0.6272



1306/未知 543秒 414毫秒/步 - 損失: 0.9323 - 稀疏類別準確度: 0.6273



1307/未知 544秒 414毫秒/步 - 損失: 0.9321 - 稀疏類別準確度: 0.6273



1308/未知 544秒 414毫秒/步 - 損失: 0.9320 - 稀疏類別準確度: 0.6274



1309/未知 544秒 414毫秒/步 - 損失: 0.9318 - 稀疏類別準確度: 0.6274



1310/未知 545秒 414毫秒/步 - 損失: 0.9317 - 稀疏類別準確度: 0.6275



1311/未知 545秒 414毫秒/步 - 損失: 0.9315 - 稀疏類別準確度: 0.6275



1312/未知 546秒 414毫秒/步 - 損失: 0.9314 - 稀疏類別準確度: 0.6276



1313/未知 546秒 414毫秒/步 - 損失: 0.9312 - 稀疏類別準確度: 0.6276



1314/未知 547秒 414毫秒/步 - 損失: 0.9311 - 稀疏類別準確度: 0.6277



1315/未知 547秒 414毫秒/步 - 損失: 0.9309 - 稀疏類別準確度: 0.6277



1316/未知 548秒 414毫秒/步 - 損失: 0.9308 - 稀疏類別準確度: 0.6278



1317/未知 548秒 414毫秒/步 - 損失: 0.9306 - 稀疏類別準確度: 0.6278



1318/未知 549秒 414毫秒/步 - 損失: 0.9305 - 稀疏類別準確度: 0.6279



1319/未知 549秒 414毫秒/步 - 損失: 0.9303 - 稀疏類別準確度: 0.6279



1320/未知 550秒 414毫秒/步 - 損失: 0.9302 - 稀疏類別準確度: 0.6280



1321/未知 550秒 414毫秒/步 - 損失: 0.9300 - 稀疏類別準確度: 0.6280



1322/未知 551秒 414毫秒/步 - 損失: 0.9299 - 稀疏類別準確度: 0.6281



1323/未知 551秒 415毫秒/步 - 損失: 0.9297 - 稀疏類別準確度: 0.6281



1324/未知 552秒 415毫秒/步 - 損失: 0.9296 - 稀疏類別準確度: 0.6282



1325/未知 552秒 415毫秒/步 - 損失: 0.9294 - 稀疏類別準確度: 0.6282



1326/未知 553秒 415毫秒/步 - 損失: 0.9293 - 稀疏類別準確度: 0.6283



1327/未知 553秒 415毫秒/步 - 損失: 0.9291 - 稀疏類別準確度: 0.6283



1328/未知 553秒 415毫秒/步 - 損失: 0.9290 - 稀疏類別準確度: 0.6284



1329/未知 554秒 415毫秒/步 - 損失: 0.9288 - 稀疏類別準確度: 0.6284



1330/未知 554秒 415毫秒/步 - 損失: 0.9287 - 稀疏類別準確度: 0.6285



1331/未知 555秒 415毫秒/步 - 損失: 0.9285 - 稀疏類別準確度: 0.6285



1332/未知 555秒 415毫秒/步 - 損失: 0.9284 - 稀疏類別準確度: 0.6285



1333/未知 556秒 415毫秒/步 - 損失: 0.9283 - 稀疏類別準確度: 0.6286



1334/未知 556秒 415毫秒/步 - 損失: 0.9281 - 稀疏類別準確度: 0.6286



1335/未知 556秒 415毫秒/步 - 損失: 0.9280 - 稀疏類別準確度: 0.6287



1336/未知 557秒 415毫秒/步 - 損失: 0.9278 - 稀疏類別準確度: 0.6287



1337/未知 557秒 415毫秒/步 - 損失: 0.9277 - 稀疏類別準確度: 0.6288



1338/未知 558秒 415毫秒/步 - 損失: 0.9275 - 稀疏類別準確度: 0.6288



1339/未知 558秒 415毫秒/步 - 損失: 0.9274 - 稀疏類別準確度: 0.6289



1340/未知 559秒 415毫秒/步 - 損失: 0.9272 - 稀疏類別準確度: 0.6289



1341/未知 559秒 415毫秒/步 - 損失: 0.9271 - 稀疏類別準確度: 0.6290



1342/未知 560秒 415毫秒/步 - 損失: 0.9269 - 稀疏類別準確度: 0.6290



1343/未知 560秒 415毫秒/步 - 損失: 0.9268 - 稀疏類別準確度: 0.6291



1344/未知 561秒 415毫秒/步 - 損失: 0.9267 - 稀疏類別準確度: 0.6291



1345/未知 561秒 415毫秒/步 - 損失: 0.9265 - 稀疏類別準確度: 0.6292



1346/未知 561秒 415毫秒/步 - 損失: 0.9264 - 稀疏類別準確度: 0.6292



1347/未知 562秒 415毫秒/步 - 損失: 0.9262 - 稀疏類別準確度: 0.6293



1348/未知 562秒 415毫秒/步 - 損失: 0.9261 - 稀疏類別準確度: 0.6293



1349/未知 563秒 415毫秒/步 - 損失: 0.9259 - 稀疏類別準確度: 0.6294



1350/未知 563秒 415毫秒/步 - 損失: 0.9258 - 稀疏類別準確度: 0.6294



1351/未知 564秒 415毫秒/步 - 損失: 0.9256 - 稀疏類別準確度: 0.6295



1352/未知 564秒 415毫秒/步 - 損失: 0.9255 - 稀疏類別準確度: 0.6295



1353/未知 564秒 415毫秒/步 - 損失: 0.9254 - 稀疏類別準確度: 0.6296



1354/未知 565秒 415毫秒/步 - 損失: 0.9252 - 稀疏類別準確度: 0.6296



1355/未知 565秒 415毫秒/步 - 損失: 0.9251 - 稀疏類別準確度: 0.6296



1356/未知 565秒 415毫秒/步 - 損失: 0.9249 - 稀疏類別準確度: 0.6297



1357/未知 566秒 415毫秒/步 - 損失: 0.9248 - 稀疏類別準確度: 0.6297



1358/未知 566秒 415毫秒/步 - 損失: 0.9246 - 稀疏類別準確度: 0.6298



1359/未知 566秒 415毫秒/步 - 損失: 0.9245 - 稀疏類別準確度: 0.6298



1360/未知 567秒 415毫秒/步 - 損失: 0.9244 - 稀疏類別準確度: 0.6299



1361/未知 567秒 415毫秒/步 - 損失: 0.9242 - 稀疏類別準確度: 0.6299



1362/未知 568秒 415毫秒/步 - 損失: 0.9241 - 稀疏類別準確度: 0.6300



1363/未知 568秒 415毫秒/步 - 損失: 0.9239 - 稀疏類別準確度: 0.6300



1364/未知 568秒 415毫秒/步 - 損失: 0.9238 - 稀疏類別準確度: 0.6301



1365/未知 569秒 415毫秒/步 - 損失: 0.9237 - 稀疏類別準確度: 0.6301



1366/未知 569秒 415毫秒/步 - 損失: 0.9235 - 稀疏類別準確度: 0.6302



1367/未知 570秒 415毫秒/步 - 損失: 0.9234 - 稀疏類別準確度: 0.6302



1368/未知 570秒 415毫秒/步 - 損失: 0.9232 - 稀疏類別準確度: 0.6303



1369/未知 571秒 415毫秒/步 - 損失: 0.9231 - 稀疏類別準確度: 0.6303



1370/未知 571秒 415毫秒/步 - 損失: 0.9229 - 稀疏類別準確度: 0.6304



1371/未知 572秒 415毫秒/步 - 損失: 0.9228 - 稀疏類別準確度: 0.6304



1372/未知 572秒 415毫秒/步 - 損失: 0.9227 - 稀疏類別準確度: 0.6304



1373/未知 573秒 415毫秒/步 - 損失: 0.9225 - 稀疏類別準確度: 0.6305



1374/未知 573秒 415毫秒/步 - 損失: 0.9224 - 稀疏類別準確度: 0.6305



1375/未知 574秒 415毫秒/步 - 損失: 0.9222 - 稀疏類別準確度: 0.6306



1376/未知 574秒 415毫秒/步 - 損失: 0.9221 - 稀疏類別準確度: 0.6306



1377/未知 574秒 415毫秒/步 - 損失: 0.9220 - 稀疏類別準確度: 0.6307



1378/未知 575秒 415毫秒/步 - 損失: 0.9218 - 稀疏類別準確度: 0.6307



1379/未知 575秒 415毫秒/步 - 損失: 0.9217 - 稀疏類別準確度: 0.6308



1380/未知 575秒 415毫秒/步 - 損失: 0.9215 - 稀疏類別準確度: 0.6308



1381/未知 576秒 415毫秒/步 - 損失: 0.9214 - 稀疏類別準確度: 0.6309



1382/未知 576秒 415毫秒/步 - 損失: 0.9213 - 稀疏類別準確度: 0.6309



1383/未知 576秒 415毫秒/步 - 損失: 0.9211 - 稀疏類別準確度: 0.6309



1384/未知 577秒 415毫秒/步 - 損失: 0.9210 - 稀疏類別準確度: 0.6310



1385/未知 577秒 415毫秒/步 - 損失: 0.9209 - 稀疏類別準確度: 0.6310



1386/未知 578秒 415毫秒/步 - 損失: 0.9207 - 稀疏類別準確度: 0.6311



1387/未知 578秒 415毫秒/步 - 損失: 0.9206 - 稀疏類別準確度: 0.6311



1388/未知 578秒 415毫秒/步 - 損失: 0.9204 - 稀疏類別準確度: 0.6312



1389/未知 579秒 415毫秒/步 - 損失: 0.9203 - 稀疏類別準確度: 0.6312



1390/未知 579秒 415毫秒/步 - 損失: 0.9202 - 稀疏類別準確度: 0.6313



1391/未知 580秒 415毫秒/步 - 損失: 0.9200 - 稀疏類別準確度: 0.6313



1392/未知 580秒 415毫秒/步 - 損失: 0.9199 - 稀疏類別準確度: 0.6314



1393/未知 580秒 415毫秒/步 - 損失: 0.9198 - 稀疏類別準確度: 0.6314



1394/未知 581秒 415毫秒/步 - 損失: 0.9196 - 稀疏類別準確度: 0.6315



1395/未知 581秒 415毫秒/步 - 損失: 0.9195 - 稀疏類別準確度: 0.6315



1396/未知 582秒 415毫秒/步 - 損失: 0.9193 - 稀疏類別準確度: 0.6315



1397/未知 582秒 415毫秒/步 - 損失: 0.9192 - 稀疏類別準確度: 0.6316



1398/未知 583秒 415毫秒/步 - 損失: 0.9191 - 稀疏類別準確度: 0.6316



1399/未知 583秒 415毫秒/步 - 損失: 0.9189 - 稀疏類別準確度: 0.6317



1400/未知 583秒 415毫秒/步 - 損失: 0.9188 - 稀疏類別準確度: 0.6317



1401/未知 584秒 415毫秒/步 - 損失: 0.9187 - 稀疏類別準確度: 0.6318



1402/未知 584秒 415毫秒/步 - 損失: 0.9185 - 稀疏類別準確度: 0.6318



1403/未知 585秒 415毫秒/步 - 損失: 0.9184 - 稀疏類別準確度: 0.6319



1404/未知 585秒 415毫秒/步 - 損失: 0.9183 - 稀疏類別準確度: 0.6319



1405/未知 586秒 415毫秒/步 - 損失: 0.9181 - 稀疏類別準確度: 0.6319



1406/未知 586秒 415毫秒/步 - 損失: 0.9180 - 稀疏類別準確度: 0.6320



1407/未知 587秒 415毫秒/步 - 損失: 0.9178 - 稀疏類別準確度: 0.6320



1408/未知 587秒 415毫秒/步 - 損失: 0.9177 - 稀疏類別準確度: 0.6321



1409/未知 588秒 415毫秒/步 - 損失: 0.9176 - 稀疏類別準確度: 0.6321



1410/未知 588秒 415毫秒/步 - 損失: 0.9174 - 稀疏類別準確度: 0.6322



1411/未知 589秒 415毫秒/步 - 損失: 0.9173 - 稀疏類別準確度: 0.6322



1412/未知 589秒 415毫秒/步 - 損失: 0.9172 - 稀疏類別準確度: 0.6323



1413/未知 590秒 415毫秒/步 - 損失: 0.9170 - 稀疏類別準確度: 0.6323



1414/未知 590秒 415毫秒/步 - 損失: 0.9169 - 稀疏類別準確度: 0.6323



1415/未知 591秒 415毫秒/步 - 損失: 0.9168 - 稀疏類別準確度: 0.6324



1416/未知 591秒 415毫秒/步 - 損失: 0.9166 - 稀疏類別準確度: 0.6324



1417/未知 591秒 415毫秒/步 - 損失: 0.9165 - 稀疏類別準確度: 0.6325



1418/未知 592秒 415毫秒/步 - 損失: 0.9164 - 稀疏類別準確度: 0.6325



1419/未知 592秒 415毫秒/步 - 損失: 0.9162 - 稀疏類別準確度: 0.6326



1420/未知 592秒 415毫秒/步 - 損失: 0.9161 - 稀疏類別準確度: 0.6326



1421/未知 593秒 415毫秒/步 - 損失: 0.9160 - 稀疏類別準確度: 0.6327



1422/未知 593秒 415毫秒/步 - 損失: 0.9158 - 稀疏類別準確度: 0.6327



1423/未知 594秒 415毫秒/步 - 損失: 0.9157 - 稀疏類別準確度: 0.6327



1424/未知 594秒 415毫秒/步 - 損失: 0.9156 - 稀疏類別準確度: 0.6328



1425/未知 594秒 415毫秒/步 - 損失: 0.9154 - 稀疏類別準確度: 0.6328



1426/未知 595秒 415毫秒/步 - 損失: 0.9153 - 稀疏類別準確度: 0.6329



1427/未知 595秒 415毫秒/步 - 損失: 0.9152 - 稀疏類別準確度: 0.6329



1428/未知 596秒 415毫秒/步 - 損失: 0.9150 - 稀疏類別準確度: 0.6330



1429/未知 596秒 415毫秒/步 - 損失: 0.9149 - 稀疏類別準確度: 0.6330



1430/未知 596秒 415毫秒/步 - 損失: 0.9148 - 稀疏類別準確度: 0.6331



1431/未知 597秒 415毫秒/步 - 損失: 0.9146 - 稀疏類別準確度: 0.6331



1432/未知 597秒 415毫秒/步 - 損失: 0.9145 - 稀疏類別準確度: 0.6331



1433/未知 598秒 415毫秒/步 - 損失: 0.9144 - 稀疏類別準確度: 0.6332



1434/未知 598秒 415毫秒/步 - 損失: 0.9142 - 稀疏類別準確度: 0.6332



1435/未知 599秒 415毫秒/步 - 損失: 0.9141 - 稀疏類別準確度: 0.6333



1436/未知 599秒 415毫秒/步 - 損失: 0.9140 - 稀疏類別準確度: 0.6333



1437/未知 599秒 415毫秒/步 - 損失: 0.9139 - 稀疏類別準確度: 0.6334



1438/未知 600秒 415毫秒/步 - 損失: 0.9137 - 稀疏類別準確度: 0.6334



1439/未知 600秒 415毫秒/步 - 損失: 0.9136 - 稀疏類別準確度: 0.6334



1440/未知 601秒 415毫秒/步 - 損失: 0.9135 - 稀疏類別準確度: 0.6335



1441/未知 601秒 415毫秒/步 - 損失: 0.9133 - 稀疏類別準確度: 0.6335



1442/未知 602秒 416毫秒/步 - 損失: 0.9132 - 稀疏類別準確度: 0.6336



1443/未知 602秒 416毫秒/步 - 損失: 0.9131 - 稀疏類別準確度: 0.6336



1444/未知 603秒 416毫秒/步 - 損失: 0.9129 - 稀疏類別準確度: 0.6337



1445/未知 603秒 416毫秒/步 - 損失: 0.9128 - 稀疏類別準確度: 0.6337



1446/未知 604秒 416毫秒/步 - 損失: 0.9127 - 稀疏類別準確度: 0.6337



1447/未知 604秒 416毫秒/步 - 損失: 0.9126 - 稀疏類別準確度: 0.6338



1448/未知 605秒 416毫秒/步 - 損失: 0.9124 - 稀疏類別準確度: 0.6338



1449/未知 605秒 416毫秒/步 - 損失: 0.9123 - 稀疏類別準確度: 0.6339



1450/未知 606秒 416毫秒/步 - 損失: 0.9122 - 稀疏類別準確度: 0.6339



1451/未知 606秒 416毫秒/步 - 損失: 0.9120 - 稀疏類別準確度: 0.6340



1452/未知 606秒 416毫秒/步 - 損失: 0.9119 - 稀疏類別準確度: 0.6340



1453/未知 607秒 416毫秒/步 - 損失: 0.9118 - 稀疏類別準確度: 0.6340



1454/未知 607秒 416毫秒/步 - 損失: 0.9116 - 稀疏類別準確度: 0.6341



1455/未知 608秒 416毫秒/步 - 損失: 0.9115 - 稀疏類別準確度: 0.6341



1456/未知 608秒 416毫秒/步 - 損失: 0.9114 - 稀疏類別準確度: 0.6342



1457/未知 609秒 416毫秒/步 - 損失: 0.9113 - 稀疏類別準確度: 0.6342



1458/未知 609秒 416毫秒/步 - 損失: 0.9111 - 稀疏類別準確度: 0.6343



1459/未知 610秒 416毫秒/步 - 損失: 0.9110 - 稀疏類別準確度: 0.6343



1460/未知 610秒 416毫秒/步 - 損失: 0.9109 - 稀疏類別準確度: 0.6343



1461/未知 610秒 416毫秒/步 - 損失: 0.9108 - 稀疏類別準確度: 0.6344



1462/未知 611秒 416毫秒/步 - 損失: 0.9106 - 稀疏類別準確度: 0.6344



1463/未知 611秒 416毫秒/步 - 損失: 0.9105 - 稀疏類別準確度: 0.6345



1464/未知 612秒 416毫秒/步 - 損失: 0.9104 - 稀疏類別準確度: 0.6345



1465/未知 612秒 416毫秒/步 - 損失: 0.9102 - 稀疏類別準確度: 0.6345



1466/未知 613秒 416毫秒/步 - 損失: 0.9101 - 稀疏類別準確度: 0.6346



1467/未知 613秒 416毫秒/步 - 損失: 0.9100 - 稀疏類別準確度: 0.6346



1468/未知 613秒 416毫秒/步 - 損失: 0.9099 - 稀疏類別準確度: 0.6347



1469/未知 614秒 416毫秒/步 - 損失: 0.9097 - 稀疏類別準確度: 0.6347



1470/未知 614秒 416毫秒/步 - 損失: 0.9096 - 稀疏類別準確度: 0.6348



1471/未知 614秒 416毫秒/步 - 損失: 0.9095 - 稀疏類別準確度: 0.6348



1472/未知 615秒 416毫秒/步 - 損失: 0.9094 - 稀疏類別準確度: 0.6348



1473/未知 615秒 416毫秒/步 - 損失: 0.9092 - 稀疏類別準確度: 0.6349



1474/未知 615秒 416毫秒/步 - 損失: 0.9091 - 稀疏類別準確度: 0.6349



1475/未知 616秒 416毫秒/步 - 損失: 0.9090 - 稀疏類別準確度: 0.6350



1476/未知 616秒 416毫秒/步 - 損失: 0.9089 - 稀疏類別準確度: 0.6350



1477/未知 616秒 416毫秒/步 - 損失: 0.9087 - 稀疏類別準確度: 0.6350



1478/未知 617秒 415毫秒/步 - 損失: 0.9086 - 稀疏類別準確度: 0.6351



1479/未知 617秒 415毫秒/步 - 損失: 0.9085 - 稀疏類別準確度: 0.6351



1480/未知 617秒 415毫秒/步 - 損失: 0.9083 - 稀疏類別準確度: 0.6352



1481/未知 618秒 415毫秒/步 - 損失: 0.9082 - 稀疏類別準確度: 0.6352



1482/未知 618秒 415毫秒/步 - 損失: 0.9081 - 稀疏類別準確度: 0.6353



1483/未知 619秒 415毫秒/步 - 損失: 0.9080 - 稀疏類別準確度: 0.6353



1484/未知 619秒 415毫秒/步 - 損失: 0.9078 - 稀疏類別準確度: 0.6353



1485/未知 620秒 415毫秒/步 - 損失: 0.9077 - 稀疏類別準確度: 0.6354



1486/未知 620秒 415毫秒/步 - 損失: 0.9076 - 稀疏類別準確度: 0.6354



1487/未知 620秒 415毫秒/步 - 損失: 0.9075 - 稀疏類別準確度: 0.6355



1488/未知 621秒 416毫秒/步 - 損失: 0.9073 - 稀疏類別準確度: 0.6355



1489/未知 621秒 416毫秒/步 - 損失: 0.9072 - 稀疏類別準確度: 0.6355



1490/未知 622秒 416毫秒/步 - 損失: 0.9071 - 稀疏類別準確度: 0.6356



1491/未知 622秒 416毫秒/步 - 損失: 0.9070 - 稀疏類別準確度: 0.6356



1492/未知 623秒 416毫秒/步 - 損失: 0.9069 - 稀疏類別準確度: 0.6357



1493/未知 623秒 416毫秒/步 - 損失: 0.9067 - 稀疏類別準確度: 0.6357



1494/未知 624秒 416毫秒/步 - 損失: 0.9066 - 稀疏類別準確度: 0.6358



1495/未知 624秒 416毫秒/步 - 損失: 0.9065 - 稀疏類別準確度: 0.6358



1496/未知 624秒 416毫秒/步 - 損失: 0.9064 - 稀疏類別準確度: 0.6358



1497/未知 625秒 416毫秒/步 - 損失: 0.9062 - 稀疏類別準確度: 0.6359



1498/未知 625秒 416毫秒/步 - 損失: 0.9061 - 稀疏類別準確度: 0.6359



1499/未知 626秒 416毫秒/步 - 損失: 0.9060 - 稀疏類別準確度: 0.6360



1500/未知 626秒 416毫秒/步 - 損失: 0.9059 - 稀疏類別準確度: 0.6360



1501/未知 627秒 416毫秒/步 - 損失: 0.9057 - 稀疏類別準確度: 0.6360



1502/未知 627秒 416毫秒/步 - 損失: 0.9056 - 稀疏類別準確度: 0.6361



1503/未知 628秒 416毫秒/步 - 損失: 0.9055 - 稀疏類別準確度: 0.6361



1504/未知 628秒 416毫秒/步 - 損失: 0.9054 - 稀疏類別準確度: 0.6362



1505/未知 628秒 416毫秒/步 - 損失: 0.9053 - 稀疏類別準確度: 0.6362



1506/未知 629秒 416毫秒/步 - 損失: 0.9051 - 稀疏類別準確度: 0.6362



1507/未知 629秒 416毫秒/步 - 損失: 0.9050 - 稀疏類別準確度: 0.6363



1508/未知 630秒 416毫秒/步 - 損失: 0.9049 - 稀疏類別準確度: 0.6363



1509/未知 630秒 416毫秒/步 - 損失: 0.9048 - 稀疏類別準確度: 0.6364



1510/未知 631秒 416毫秒/步 - 損失: 0.9046 - 稀疏類別準確度: 0.6364



1511/未知 631秒 416毫秒/步 - 損失: 0.9045 - 稀疏類別準確度: 0.6364



1512/未知 631秒 416毫秒/步 - 損失: 0.9044 - 稀疏類別準確度: 0.6365



1513/未知 632秒 416毫秒/步 - 損失: 0.9043 - 稀疏類別準確度: 0.6365



1514/未知 632秒 416毫秒/步 - 損失: 0.9042 - 稀疏類別準確度: 0.6366



1515/未知 632秒 416毫秒/步 - 損失: 0.9040 - 稀疏類別準確度: 0.6366



1516/未知 633秒 416毫秒/步 - 損失: 0.9039 - 稀疏類別準確度: 0.6366



1517/未知 633秒 416毫秒/步 - 損失: 0.9038 - 稀疏類別準確度: 0.6367



1518/未知 634秒 416毫秒/步 - 損失: 0.9037 - 稀疏類別準確度: 0.6367



1519/未知 634秒 416毫秒/步 - 損失: 0.9036 - 稀疏類別準確度: 0.6368



1520/未知 634秒 415毫秒/步 - 損失: 0.9034 - 稀疏類別準確度: 0.6368



1521/未知 635秒 415毫秒/步 - 損失: 0.9033 - 稀疏類別準確度: 0.6368



1522/未知 635秒 415毫秒/步 - 損失: 0.9032 - 稀疏類別準確度: 0.6369



1523/未知 635秒 415毫秒/步 - 損失: 0.9031 - 稀疏類別準確度: 0.6369



1524/未知 636秒 415毫秒/步 - 損失: 0.9029 - 稀疏類別準確度: 0.6370



1525/未知 636秒 415毫秒/步 - 損失: 0.9028 - 稀疏類別準確度: 0.6370



1526/未知 637秒 415毫秒/步 - 損失: 0.9027 - 稀疏類別準確度: 0.6370



1527/未知 637秒 415毫秒/步 - 損失: 0.9026 - 稀疏類別準確度: 0.6371



1528/未知 638秒 416毫秒/步 - 損失: 0.9025 - 稀疏類別準確度: 0.6371



1529/未知 638秒 416毫秒/步 - 損失: 0.9023 - 稀疏類別準確度: 0.6372



1530/未知 639秒 416毫秒/步 - 損失: 0.9022 - 稀疏類別準確度: 0.6372



1531/未知 639秒 416毫秒/步 - 損失: 0.9021 - 稀疏類別準確度: 0.6372



1532/未知 640秒 416毫秒/步 - 損失: 0.9020 - 稀疏類別準確度: 0.6373



1533/未知 640秒 416毫秒/步 - 損失: 0.9019 - 稀疏類別準確度: 0.6373



1534/未知 641秒 416毫秒/步 - 損失: 0.9018 - 稀疏類別準確度: 0.6374



1535/未知 641秒 416毫秒/步 - 損失: 0.9016 - 稀疏類別準確度: 0.6374



1536/未知 641秒 416毫秒/步 - 損失: 0.9015 - 稀疏類別準確度: 0.6374



1537/未知 642秒 416毫秒/步 - 損失: 0.9014 - 稀疏類別準確度: 0.6375



1538/未知 642秒 416毫秒/步 - 損失: 0.9013 - 稀疏類別準確度: 0.6375



1539/未知 643秒 416毫秒/步 - 損失: 0.9012 - 稀疏類別準確度: 0.6376



1540/未知 643秒 416毫秒/步 - 損失: 0.9010 - 稀疏類別準確度: 0.6376



1541/未知 644秒 416毫秒/步 - 損失: 0.9009 - 稀疏類別準確度: 0.6376



1542/未知 644秒 416毫秒/步 - 損失: 0.9008 - 稀疏類別準確度: 0.6377



1543/未知 645秒 416毫秒/步 - 損失: 0.9007 - 稀疏類別準確度: 0.6377



1544/未知 645秒 416毫秒/步 - 損失: 0.9006 - 稀疏類別準確度: 0.6378



1545/未知 645秒 416毫秒/步 - 損失: 0.9004 - 稀疏類別準確度: 0.6378



1546/未知 646秒 416毫秒/步 - 損失: 0.9003 - 稀疏類別準確度: 0.6378



1547/未知 646秒 416毫秒/步 - 損失: 0.9002 - 稀疏類別準確度: 0.6379



1548/未知 646秒 416毫秒/步 - 損失: 0.9001 - 稀疏類別準確度: 0.6379



1549/未知 647秒 416毫秒/步 - 損失: 0.9000 - 稀疏類別準確度: 0.6379



1550/未知 647秒 416毫秒/步 - 損失: 0.8999 - 稀疏類別準確度: 0.6380



1551/未知 648秒 416毫秒/步 - 損失: 0.8997 - 稀疏類別準確度: 0.6380



1552/未知 648秒 416毫秒/步 - 損失: 0.8996 - 稀疏類別準確度: 0.6381



1553/未知 648秒 416毫秒/步 - 損失: 0.8995 - 稀疏類別準確度: 0.6381



1554/未知 649秒 416毫秒/步 - 損失: 0.8994 - 稀疏類別準確度: 0.6381



1555/未知 649秒 416毫秒/步 - 損失: 0.8993 - 稀疏類別準確度: 0.6382



1556/未知 650秒 416毫秒/步 - 損失: 0.8992 - 稀疏類別準確度: 0.6382



1557/未知 650秒 416毫秒/步 - 損失: 0.8990 - 稀疏類別準確度: 0.6383



1558/未知 650秒 416毫秒/步 - 損失: 0.8989 - 稀疏類別準確度: 0.6383



1559/未知 651秒 416毫秒/步 - 損失: 0.8988 - 稀疏類別準確度: 0.6383



1560/未知 651秒 416毫秒/步 - 損失: 0.8987 - 稀疏類別準確度: 0.6384



1561/未知 652秒 416毫秒/步 - 損失: 0.8986 - 稀疏類別準確度: 0.6384



1562/未知 652秒 416毫秒/步 - 損失: 0.8985 - 稀疏類別準確度: 0.6385



1563/未知 653秒 416毫秒/步 - 損失: 0.8983 - 稀疏類別準確度: 0.6385



1564/未知 653秒 416毫秒/步 - 損失: 0.8982 - 稀疏類別準確度: 0.6385



1565/未知 654秒 416毫秒/步 - 損失: 0.8981 - 稀疏類別準確度: 0.6386



1566/未知 654秒 416毫秒/步 - 損失: 0.8980 - 稀疏類別準確度: 0.6386



1567/未知 655秒 416毫秒/步 - 損失: 0.8979 - 稀疏類別準確度: 0.6386



1568/未知 655秒 416毫秒/步 - 損失: 0.8978 - 稀疏類別準確度: 0.6387



1569/未知 656秒 416毫秒/步 - 損失: 0.8977 - 稀疏類別準確度: 0.6387



1570/未知 656秒 416毫秒/步 - 損失: 0.8975 - 稀疏類別準確度: 0.6388



1571/未知 656秒 416毫秒/步 - 損失: 0.8974 - 稀疏類別準確度: 0.6388



1572/未知 657秒 416毫秒/步 - 損失: 0.8973 - 稀疏類別準確度: 0.6388



1573/未知 657秒 416毫秒/步 - 損失: 0.8972 - 稀疏類別準確度: 0.6389



1574/未知 658秒 416毫秒/步 - 損失: 0.8971 - 稀疏類別準確度: 0.6389



1575/未知 658秒 416毫秒/步 - 損失: 0.8970 - 稀疏類別準確度: 0.6389



1576/未知 659秒 416毫秒/步 - 損失: 0.8969 - 稀疏類別準確度: 0.6390



1577/未知 659秒 416毫秒/步 - 損失: 0.8967 - 稀疏類別準確度: 0.6390



1578/未知 660秒 416毫秒/步 - 損失: 0.8966 - 稀疏類別準確度: 0.6391



1579/未知 660秒 416毫秒/步 - 損失: 0.8965 - 稀疏類別準確度: 0.6391



1580/未知 661秒 416毫秒/步 - 損失: 0.8964 - 稀疏類別準確度: 0.6391



1581/未知 661秒 416毫秒/步 - 損失: 0.8963 - 稀疏類別準確度: 0.6392



1582/未知 662秒 416毫秒/步 - 損失: 0.8962 - 稀疏類別準確度: 0.6392



1583/未知 662秒 417毫秒/步 - 損失: 0.8961 - 稀疏類別準確度: 0.6392



1584/未知 662秒 417毫秒/步 - 損失: 0.8959 - 稀疏類別準確度: 0.6393



1585/未知 663秒 417毫秒/步 - 損失: 0.8958 - 稀疏類別準確度: 0.6393



1586/未知 663秒 417毫秒/步 - 損失: 0.8957 - 稀疏類別準確度: 0.6394



1587/未知 664秒 417毫秒/步 - 損失: 0.8956 - 稀疏類別準確度: 0.6394



1588/未知 664秒 417毫秒/步 - 損失: 0.8955 - 稀疏類別準確度: 0.6394



1589/未知 665秒 417毫秒/步 - 損失: 0.8954 - 稀疏類別準確度: 0.6395



1590/未知 665秒 417毫秒/步 - 損失: 0.8953 - 稀疏類別準確度: 0.6395



1591/未知 666秒 417毫秒/步 - 損失: 0.8952 - 稀疏類別準確度: 0.6395



1592/未知 666秒 417毫秒/步 - 損失: 0.8950 - 稀疏類別準確度: 0.6396



1593/未知 666秒 417毫秒/步 - 損失: 0.8949 - 稀疏類別準確度: 0.6396



1594/未知 667秒 417毫秒/步 - 損失: 0.8948 - 稀疏類別準確度: 0.6397



1595/未知 667秒 417毫秒/步 - 損失: 0.8947 - 稀疏類別準確度: 0.6397



1596/未知 668秒 417毫秒/步 - 損失: 0.8946 - 稀疏類別準確度: 0.6397



1597/未知 668秒 417毫秒/步 - 損失: 0.8945 - 稀疏類別準確度: 0.6398



1598/未知 669秒 417毫秒/步 - 損失: 0.8944 - 稀疏類別準確度: 0.6398



1599/未知 669秒 417毫秒/步 - 損失: 0.8943 - 稀疏類別準確度: 0.6398



1600/未知 669秒 417毫秒/步 - 損失: 0.8941 - 稀疏類別準確度: 0.6399



1601/未知 670秒 417毫秒/步 - 損失: 0.8940 - 稀疏類別準確度: 0.6399



1602/未知 670秒 417毫秒/步 - 損失: 0.8939 - 稀疏類別準確度: 0.6400



1603/未知 671秒 417毫秒/步 - 損失: 0.8938 - 稀疏類別準確度: 0.6400



1604/未知 671秒 417毫秒/步 - 損失: 0.8937 - 稀疏類別準確度: 0.6400



1605/未知 672秒 417毫秒/步 - 損失: 0.8936 - 稀疏類別準確度: 0.6401



1606/未知 672秒 417毫秒/步 - 損失: 0.8935 - 稀疏類別準確度: 0.6401



1607/未知 673秒 417毫秒/步 - 損失: 0.8934 - 稀疏類別準確度: 0.6401



1608/未知 673秒 417毫秒/步 - 損失: 0.8933 - 稀疏類別準確度: 0.6402



1609/未知 673秒 417毫秒/步 - 損失: 0.8931 - 稀疏類別準確度: 0.6402



1610/未知 674秒 417毫秒/步 - 損失: 0.8930 - 稀疏類別準確度: 0.6403



1611/未知 674秒 417毫秒/步 - 損失: 0.8929 - 稀疏類別準確度: 0.6403



1612/未知 675秒 417毫秒/步 - 損失: 0.8928 - 稀疏類別準確度: 0.6403



1613/未知 675秒 417毫秒/步 - 損失: 0.8927 - 稀疏類別準確度: 0.6404



1614/未知 675秒 417毫秒/步 - 損失: 0.8926 - 稀疏類別準確度: 0.6404



1615/未知 676秒 417毫秒/步 - 損失: 0.8925 - 稀疏類別準確度: 0.6404



1616/未知 676秒 417毫秒/步 - 損失: 0.8924 - 稀疏類別準確度: 0.6405



1617/未知 677秒 417毫秒/步 - 損失: 0.8923 - 稀疏類別準確度: 0.6405



1618/未知 677秒 417毫秒/步 - 損失: 0.8922 - 稀疏類別準確度: 0.6405



1619/未知 677秒 417毫秒/步 - 損失: 0.8920 - 稀疏類別準確度: 0.6406



1620/未知 678秒 417毫秒/步 - 損失: 0.8919 - 稀疏類別準確度: 0.6406



1621/未知 678秒 417毫秒/步 - 損失: 0.8918 - 稀疏類別準確度: 0.6407



1622/未知 678秒 417毫秒/步 - 損失: 0.8917 - 稀疏類別準確度: 0.6407



1623/未知 679秒 417毫秒/步 - 損失: 0.8916 - 稀疏類別準確度: 0.6407



1624/未知 679秒 417毫秒/步 - 損失: 0.8915 - 稀疏類別準確度: 0.6408



1625/未知 679秒 416毫秒/步 - 損失: 0.8914 - 稀疏類別準確度: 0.6408



1626/未知 680秒 416毫秒/步 - 損失: 0.8913 - 稀疏類別準確度: 0.6408



1627/未知 680秒 417毫秒/步 - 損失: 0.8912 - 稀疏類別準確度: 0.6409



1628/未知 681秒 417毫秒/步 - 損失: 0.8911 - 稀疏類別準確度: 0.6409



1629/未知 681秒 417毫秒/步 - 損失: 0.8909 - 稀疏類別準確度: 0.6409



1630/未知 682秒 417毫秒/步 - 損失: 0.8908 - 稀疏類別準確度: 0.6410



1631/未知 682秒 417毫秒/步 - 損失: 0.8907 - 稀疏類別準確度: 0.6410



1632/未知 683秒 417毫秒/步 - 損失: 0.8906 - 稀疏類別準確度: 0.6411



1633/未知 683秒 417毫秒/步 - 損失: 0.8905 - 稀疏類別準確度: 0.6411



1634/未知 684秒 417毫秒/步 - 損失: 0.8904 - 稀疏類別準確度: 0.6411



1635/未知 684秒 417毫秒/步 - 損失: 0.8903 - 稀疏類別準確度: 0.6412



1636/未知 685秒 417毫秒/步 - 損失: 0.8902 - 稀疏類別準確度: 0.6412



1637/未知 685秒 417毫秒/步 - 損失: 0.8901 - 稀疏類別準確度: 0.6412



1638/未知 686秒 417毫秒/步 - 損失: 0.8900 - 稀疏類別準確度: 0.6413



1639/未知 686秒 417毫秒/步 - 損失: 0.8899 - 稀疏類別準確度: 0.6413



1640/未知 686秒 417毫秒/步 - 損失: 0.8898 - 稀疏類別準確度: 0.6413



1641/未知 687秒 417毫秒/步 - 損失: 0.8897 - 稀疏類別準確度: 0.6414



1642/未知 687秒 417毫秒/步 - 損失: 0.8895 - 稀疏類別準確度: 0.6414



1643/未知 688秒 417毫秒/步 - 損失: 0.8894 - 稀疏類別準確度: 0.6414



1644/未知 688秒 417毫秒/步 - 損失: 0.8893 - 稀疏類別準確度: 0.6415



1645/未知 689秒 417毫秒/步 - 損失: 0.8892 - 稀疏類別準確度: 0.6415



1646/未知 689秒 417毫秒/步 - 損失: 0.8891 - 稀疏類別準確度: 0.6416



1647/未知 690秒 417毫秒/步 - 損失: 0.8890 - 稀疏類別準確度: 0.6416



1648/未知 690秒 417毫秒/步 - 損失: 0.8889 - 稀疏類別準確度: 0.6416



1649/未知 690秒 417毫秒/步 - 損失: 0.8888 - 稀疏類別準確度: 0.6417



1650/未知 691秒 417毫秒/步 - 損失: 0.8887 - 稀疏類別準確度: 0.6417



1651/未知 691秒 417毫秒/步 - 損失: 0.8886 - 稀疏類別準確度: 0.6417



1652/未知 692秒 417毫秒/步 - 損失: 0.8885 - 稀疏類別準確度: 0.6418



1653/未知 692秒 417毫秒/步 - 損失: 0.8884 - 稀疏類別準確度: 0.6418



1654/未知 693秒 417毫秒/步 - 損失: 0.8883 - 稀疏類別準確度: 0.6418



1655/未知 693秒 417毫秒/步 - 損失: 0.8882 - 稀疏類別準確度: 0.6419



1656/未知 693秒 417毫秒/步 - 損失: 0.8880 - 稀疏類別準確度: 0.6419



1657/未知 694秒 417毫秒/步 - 損失: 0.8879 - 稀疏類別準確度: 0.6419



1658/未知 694秒 417毫秒/步 - 損失: 0.8878 - 稀疏類別準確度: 0.6420



1659/未知 695秒 417毫秒/步 - 損失: 0.8877 - 稀疏類別準確度: 0.6420



1660/未知 695秒 417毫秒/步 - 損失: 0.8876 - 稀疏類別準確度: 0.6420



1661/未知 695秒 417毫秒/步 - 損失: 0.8875 - 稀疏類別準確度: 0.6421



1662/未知 696秒 417毫秒/步 - 損失: 0.8874 - 稀疏類別準確度: 0.6421



1663/未知 696秒 417毫秒/步 - 損失: 0.8873 - 稀疏類別準確度: 0.6422



1664/未知 696秒 417毫秒/步 - 損失: 0.8872 - 稀疏類別準確度: 0.6422



1665/未知 697秒 417毫秒/步 - 損失: 0.8871 - 稀疏類別準確度: 0.6422



1666/未知 697秒 417毫秒/步 - 損失: 0.8870 - 稀疏類別準確度: 0.6423



1667/未知 698秒 417毫秒/步 - 損失: 0.8869 - 稀疏類別準確度: 0.6423



1668/未知 698秒 417毫秒/步 - 損失: 0.8868 - 稀疏類別準確度: 0.6423



1669/未知 698秒 417毫秒/步 - 損失: 0.8867 - 稀疏類別準確度: 0.6424



1670/未知 699秒 417毫秒/步 - 損失: 0.8866 - 稀疏類別準確度: 0.6424



1671/未知 699秒 417毫秒/步 - 損失: 0.8865 - 稀疏類別準確度: 0.6424



1672/未知 700秒 417毫秒/步 - 損失: 0.8864 - 稀疏類別準確度: 0.6425



1673/未知 700秒 417毫秒/步 - 損失: 0.8863 - 稀疏類別準確度: 0.6425



1674/未知 700秒 417毫秒/步 - 損失: 0.8862 - 稀疏類別準確度: 0.6425



1675/未知 701秒 417毫秒/步 - 損失: 0.8861 - 稀疏類別準確度: 0.6426



1676/未知 701秒 417毫秒/步 - 損失: 0.8859 - 稀疏類別準確度: 0.6426



1677/未知 702秒 417毫秒/步 - 損失: 0.8858 - 稀疏類別準確度: 0.6426



1678/未知 702秒 417毫秒/步 - 損失: 0.8857 - 稀疏類別準確度: 0.6427



1679/未知 703秒 417毫秒/步 - 損失: 0.8856 - 稀疏類別準確度: 0.6427



1680/未知 703秒 417毫秒/步 - 損失: 0.8855 - 稀疏類別準確度: 0.6427



1681/未知 704秒 417毫秒/步 - 損失: 0.8854 - 稀疏類別準確度: 0.6428



1682/未知 704秒 417毫秒/步 - 損失: 0.8853 - 稀疏類別準確度: 0.6428



1683/未知 705秒 417毫秒/步 - 損失: 0.8852 - 稀疏類別準確度: 0.6428



1684/未知 705秒 417毫秒/步 - 損失: 0.8851 - 稀疏類別準確度: 0.6429



1685/未知 706秒 417毫秒/步 - 損失: 0.8850 - 稀疏類別準確度: 0.6429



1686/未知 706秒 417毫秒/步 - 損失: 0.8849 - 稀疏類別準確度: 0.6429



1687/未知 706秒 417毫秒/步 - 損失: 0.8848 - 稀疏類別準確度: 0.6430



1688/未知 707秒 417毫秒/步 - 損失: 0.8847 - 稀疏類別準確度: 0.6430



1689/未知 707秒 417毫秒/步 - 損失: 0.8846 - 稀疏類別準確度: 0.6431



1690/未知 708秒 417毫秒/步 - 損失: 0.8845 - 稀疏類別準確度: 0.6431



1691/未知 708秒 417毫秒/步 - 損失: 0.8844 - 稀疏類別準確度: 0.6431



1692/未知 709秒 417毫秒/步 - 損失: 0.8843 - 稀疏類別準確度: 0.6432



1693/未知 709秒 417毫秒/步 - 損失: 0.8842 - 稀疏類別準確度: 0.6432



1694/未知 709秒 417毫秒/步 - 損失: 0.8841 - 稀疏類別準確度: 0.6432



1695/未知 710秒 417毫秒/步 - 損失: 0.8840 - 稀疏類別準確度: 0.6433



1696/未知 710秒 417毫秒/步 - 損失: 0.8839 - 稀疏類別準確度: 0.6433



1697/未知 711秒 417毫秒/步 - 損失: 0.8838 - 稀疏類別準確度: 0.6433



1698/未知 711秒 417毫秒/步 - 損失: 0.8837 - 稀疏類別準確度: 0.6434



1699/未知 711秒 417毫秒/步 - 損失: 0.8836 - 稀疏類別準確度: 0.6434



1700/未知 712秒 417毫秒/步 - 損失: 0.8835 - 稀疏類別準確度: 0.6434



1701/未知 712秒 417毫秒/步 - 損失: 0.8834 - 稀疏類別準確度: 0.6435



1702/未知 713秒 417毫秒/步 - 損失: 0.8833 - 稀疏類別準確度: 0.6435



1703/未知 713秒 417毫秒/步 - 損失: 0.8832 - 稀疏類別準確度: 0.6435



1704/未知 713秒 417毫秒/步 - 損失: 0.8831 - 稀疏類別準確度: 0.6436



1705/未知 714秒 417毫秒/步 - 損失: 0.8830 - 稀疏類別準確度: 0.6436



1706/未知 714秒 417毫秒/步 - 損失: 0.8829 - 稀疏類別準確度: 0.6436



1707/未知 714秒 417毫秒/步 - 損失: 0.8828 - 稀疏類別準確度: 0.6437



1708/未知 715秒 417毫秒/步 - 損失: 0.8827 - 稀疏類別準確度: 0.6437



1709/未知 715秒 417毫秒/步 - 損失: 0.8826 - 稀疏類別準確度: 0.6437



1710/未知 716秒 417毫秒/步 - 損失: 0.8825 - 稀疏類別準確度: 0.6438



1711/未知 716秒 417毫秒/步 - 損失: 0.8824 - 稀疏類別準確度: 0.6438



1712/未知 717秒 417毫秒/步 - 損失: 0.8823 - 稀疏類別準確度: 0.6438



1713/未知 717秒 417毫秒/步 - 損失: 0.8822 - 稀疏類別準確度: 0.6439



1714/未知 718秒 417毫秒/步 - 損失: 0.8821 - 稀疏類別準確度: 0.6439



1715/未知 718秒 417毫秒/步 - 損失: 0.8820 - 稀疏類別準確度: 0.6439



1716/未知 719秒 417毫秒/步 - 損失: 0.8818 - 稀疏類別準確度: 0.6440



1717/未知 719秒 417毫秒/步 - 損失: 0.8817 - 稀疏類別準確度: 0.6440



1718/未知 719秒 417毫秒/步 - 損失: 0.8816 - 稀疏類別準確度: 0.6440



1719/未知 720秒 417毫秒/步 - 損失: 0.8815 - 稀疏類別準確度: 0.6441



1720/未知 720秒 417毫秒/步 - 損失: 0.8814 - 稀疏類別準確度: 0.6441



1721/未知 720秒 417毫秒/步 - 損失: 0.8813 - 稀疏類別準確度: 0.6441



1722/未知 721秒 417毫秒/步 - 損失: 0.8812 - 稀疏類別準確度: 0.6442



1723/未知 721秒 417毫秒/步 - 損失: 0.8811 - 稀疏類別準確度: 0.6442



1724/未知 722秒 417毫秒/步 - 損失: 0.8810 - 稀疏類別準確度: 0.6442



1725/未知 722秒 417毫秒/步 - 損失: 0.8809 - 稀疏類別準確度: 0.6443



1726/未知 722秒 417毫秒/步 - 損失: 0.8808 - 稀疏類別準確度: 0.6443



1727/未知 723秒 417毫秒/步 - 損失: 0.8807 - 稀疏類別準確度: 0.6443



1728/未知 723秒 417毫秒/步 - 損失: 0.8806 - 稀疏類別準確度: 0.6444



1729/未知 723秒 417毫秒/步 - 損失: 0.8805 - 稀疏類別準確度: 0.6444



1730/未知 724秒 417毫秒/步 - 損失: 0.8804 - 稀疏類別準確度: 0.6444



1731/未知 724秒 417毫秒/步 - 損失: 0.8804 - 稀疏類別準確度: 0.6445



1732/未知 725秒 417毫秒/步 - 損失: 0.8803 - 稀疏類別準確度: 0.6445



1733/未知 725秒 417毫秒/步 - 損失: 0.8802 - 稀疏類別準確度: 0.6445



1734/未知 726秒 417毫秒/步 - 損失: 0.8801 - 稀疏類別準確度: 0.6446



1735/未知 726秒 417毫秒/步 - 損失: 0.8800 - 稀疏類別準確度: 0.6446



1736/未知 727秒 417毫秒/步 - 損失: 0.8799 - 稀疏類別準確度: 0.6446



1737/未知 727秒 417毫秒/步 - 損失: 0.8798 - 稀疏類別準確度: 0.6447



1738/未知 727秒 417毫秒/步 - 損失: 0.8797 - 稀疏類別準確度: 0.6447



1739/未知 728秒 417毫秒/步 - 損失: 0.8796 - 稀疏類別準確度: 0.6447



1740/未知 728秒 417毫秒/步 - 損失: 0.8795 - 稀疏類別準確度: 0.6448



1741/未知 729秒 417毫秒/步 - 損失: 0.8794 - 稀疏類別準確度: 0.6448



1742/未知 729秒 417毫秒/步 - 損失: 0.8793 - 稀疏類別準確度: 0.6448



1743/未知 730秒 417毫秒/步 - 損失: 0.8792 - 稀疏類別準確度: 0.6449



1744/未知 730秒 417毫秒/步 - 損失: 0.8791 - 稀疏類別準確度: 0.6449



1745/未知 730秒 417毫秒/步 - 損失: 0.8790 - 稀疏類別準確度: 0.6449



1746/未知 731秒 417毫秒/步 - 損失: 0.8789 - 稀疏類別準確度: 0.6450



1747/未知 731秒 417毫秒/步 - 損失: 0.8788 - 稀疏類別準確度: 0.6450



1748/未知 731秒 417毫秒/步 - 損失: 0.8787 - 稀疏類別準確度: 0.6450



1749/未知 732秒 417毫秒/步 - 損失: 0.8786 - 稀疏類別準確度: 0.6451



1750/未知 732秒 417毫秒/步 - 損失: 0.8785 - 稀疏類別準確度: 0.6451



1751/未知 733秒 417毫秒/步 - 損失: 0.8784 - 稀疏類別準確度: 0.6451



1752/未知 733秒 417毫秒/步 - 損失: 0.8783 - 稀疏類別準確度: 0.6452



1753/未知 733秒 417毫秒/步 - 損失: 0.8782 - 稀疏類別準確度: 0.6452



1754/未知 734秒 417毫秒/步 - 損失: 0.8781 - 稀疏類別準確度: 0.6452



1755/未知 734秒 417毫秒/步 - 損失: 0.8780 - 稀疏類別準確度: 0.6453



1756/未知 735秒 417毫秒/步 - 損失: 0.8779 - 稀疏類別準確度: 0.6453



1757/未知 735秒 417毫秒/步 - 損失: 0.8778 - 稀疏類別準確度: 0.6453



1758/未知 736秒 417毫秒/步 - 損失: 0.8777 - 稀疏類別準確度: 0.6453



1759/未知 736秒 417毫秒/步 - 損失: 0.8776 - 稀疏類別準確度: 0.6454



1760/未知 737秒 417毫秒/步 - 損失: 0.8775 - 稀疏類別準確度: 0.6454



1761/未知 737秒 417毫秒/步 - 損失: 0.8774 - 稀疏類別準確度: 0.6454



1762/未知 738秒 417毫秒/步 - 損失: 0.8773 - 稀疏類別準確度: 0.6455



1763/未知 738秒 417毫秒/步 - 損失: 0.8772 - 稀疏類別準確度: 0.6455



1764/未知 738秒 417毫秒/步 - 損失: 0.8771 - 稀疏類別準確度: 0.6455



1765/未知 739秒 417毫秒/步 - 損失: 0.8770 - 稀疏類別準確度: 0.6456



1766/未知 739秒 417毫秒/步 - 損失: 0.8769 - 稀疏類別準確度: 0.6456



1767/未知 739秒 417毫秒/步 - 損失: 0.8768 - 稀疏類別準確度: 0.6456



1768/未知 740秒 417毫秒/步 - 損失: 0.8767 - 稀疏類別準確度: 0.6457



1769/未知 740秒 417毫秒/步 - 損失: 0.8766 - 稀疏類別準確度: 0.6457



1770/未知 741秒 417毫秒/步 - 損失: 0.8765 - 稀疏類別準確度: 0.6457



1771/未知 741秒 417毫秒/步 - 損失: 0.8764 - 稀疏類別準確度: 0.6458



1772/未知 741秒 417毫秒/步 - 損失: 0.8763 - 稀疏類別準確度: 0.6458



1773/未知 742秒 417毫秒/步 - 損失: 0.8763 - 稀疏類別準確度: 0.6458



1774/未知 742秒 417毫秒/步 - 損失: 0.8762 - 稀疏類別準確度: 0.6459



1775/未知 743秒 417毫秒/步 - 損失: 0.8761 - 稀疏類別準確度: 0.6459



1776/未知 743秒 417毫秒/步 - 損失: 0.8760 - 稀疏類別準確度: 0.6459



1777/未知 743秒 417毫秒/步 - 損失: 0.8759 - 稀疏類別準確度: 0.6460



1778/未知 744秒 417毫秒/步 - 損失: 0.8758 - 稀疏類別準確度: 0.6460



1779/未知 744秒 417毫秒/步 - 損失: 0.8757 - 稀疏類別準確度: 0.6460



1780/未知 745秒 417毫秒/步 - 損失: 0.8756 - 稀疏類別準確度: 0.6461



1781/未知 745秒 417毫秒/步 - 損失: 0.8755 - 稀疏類別準確度: 0.6461



1782/未知 746秒 417毫秒/步 - 損失: 0.8754 - 稀疏類別準確度: 0.6461



1783/未知 746秒 417毫秒/步 - 損失: 0.8753 - 稀疏類別準確度: 0.6461



1784/未知 747秒 417毫秒/步 - 損失: 0.8752 - 稀疏類別準確度: 0.6462



1785/未知 747秒 417毫秒/步 - 損失: 0.8751 - 稀疏類別準確度: 0.6462



1786/未知 747秒 417毫秒/步 - 損失: 0.8750 - 稀疏類別準確度: 0.6462



1787/未知 748秒 417毫秒/步 - 損失: 0.8749 - 稀疏類別準確度: 0.6463



1788/未知 748秒 417毫秒/步 - 損失: 0.8748 - 稀疏類別準確度: 0.6463



1789/未知 749秒 417毫秒/步 - 損失: 0.8747 - 稀疏類別準確度: 0.6463



1790/未知 749秒 417毫秒/步 - 損失: 0.8746 - 稀疏類別準確度: 0.6464



1791/未知 750秒 417毫秒/步 - 損失: 0.8745 - 稀疏類別準確度: 0.6464



1792/未知 750秒 417毫秒/步 - 損失: 0.8744 - 稀疏類別準確度: 0.6464



1793/未知 751秒 417毫秒/步 - 損失: 0.8743 - 稀疏類別準確度: 0.6465



1794/未知 751秒 417毫秒/步 - 損失: 0.8743 - 稀疏類別準確度: 0.6465



1795/未知 752秒 417毫秒/步 - 損失: 0.8742 - 稀疏類別準確度: 0.6465



1796/未知 752秒 417毫秒/步 - 損失: 0.8741 - 稀疏類別準確度: 0.6466



1797/未知 753秒 417毫秒/步 - 損失: 0.8740 - 稀疏類別準確度: 0.6466



1798/未知 753秒 417毫秒/步 - 損失: 0.8739 - 稀疏類別準確度: 0.6466



1799/未知 753秒 417毫秒/步 - 損失: 0.8738 - 稀疏類別準確度: 0.6466



1800/未知 754秒 417毫秒/步 - 損失: 0.8737 - 稀疏類別準確度: 0.6467



1801/未知 754秒 417毫秒/步 - 損失: 0.8736 - 稀疏類別準確度: 0.6467



1802/未知 755秒 417毫秒/步 - 損失: 0.8735 - 稀疏類別準確度: 0.6467



1803/未知 755秒 417毫秒/步 - 損失: 0.8734 - 稀疏類別準確度: 0.6468



1804/未知 756秒 417毫秒/步 - 損失: 0.8733 - 稀疏類別準確度: 0.6468



1805/未知 756秒 417毫秒/步 - 損失: 0.8732 - 稀疏類別準確度: 0.6468



1806/未知 757秒 417毫秒/步 - 損失: 0.8731 - 稀疏類別準確度: 0.6469



1807/未知 757秒 417毫秒/步 - 損失: 0.8730 - 稀疏類別準確度: 0.6469



1808/未知 757秒 417毫秒/步 - 損失: 0.8729 - 稀疏類別準確度: 0.6469



1809/未知 758秒 417毫秒/步 - 損失: 0.8729 - 稀疏類別準確度: 0.6470



1810/未知 758秒 417毫秒/步 - 損失: 0.8728 - 稀疏類別準確度: 0.6470



1811/未知 758秒 417毫秒/步 - 損失: 0.8727 - 稀疏類別準確度: 0.6470



1812/未知 759秒 417毫秒/步 - 損失: 0.8726 - 稀疏類別準確度: 0.6471



1813/未知 759秒 417毫秒/步 - 損失: 0.8725 - 稀疏類別準確度: 0.6471



1814/未知 760秒 417毫秒/步 - 損失: 0.8724 - 稀疏類別準確度: 0.6471



1815/未知 760秒 417毫秒/步 - 損失: 0.8723 - 稀疏類別準確度: 0.6471



1816/未知 760秒 417毫秒/步 - 損失: 0.8722 - 稀疏類別準確度: 0.6472



1817/未知 761秒 417毫秒/步 - 損失: 0.8721 - 稀疏類別準確度: 0.6472



1818/未知 761秒 417毫秒/步 - 損失: 0.8720 - 稀疏類別準確度: 0.6472



1819/未知 761秒 417毫秒/步 - 損失: 0.8719 - 稀疏類別準確度: 0.6473



1820/未知 762秒 417毫秒/步 - 損失: 0.8718 - 稀疏類別準確度: 0.6473



1821/未知 762秒 417毫秒/步 - 損失: 0.8717 - 稀疏類別準確度: 0.6473



1822/未知 763秒 417毫秒/步 - 損失: 0.8717 - 稀疏類別準確度: 0.6474



1823/未知 763秒 417毫秒/步 - 損失: 0.8716 - 稀疏類別準確度: 0.6474



1824/未知 764秒 417毫秒/步 - 損失: 0.8715 - 稀疏類別準確度: 0.6474



1825/未知 764秒 417毫秒/步 - 損失: 0.8714 - 稀疏類別準確度: 0.6475



1826/未知 765秒 417毫秒/步 - 損失: 0.8713 - 稀疏類別準確度: 0.6475



1827/未知 765秒 417毫秒/步 - 損失: 0.8712 - 稀疏類別準確度: 0.6475



1828/未知 766秒 417毫秒/步 - 損失: 0.8711 - 稀疏類別準確度: 0.6475



1829/未知 766秒 417毫秒/步 - 損失: 0.8710 - 稀疏類別準確度: 0.6476



1830/未知 767秒 417毫秒/步 - 損失: 0.8709 - 稀疏類別準確度: 0.6476



1831/未知 767秒 417毫秒/步 - 損失: 0.8708 - 稀疏類別準確度: 0.6476



1832/未知 767秒 417毫秒/步 - 損失: 0.8707 - 稀疏類別準確度: 0.6477



1833/未知 768秒 417毫秒/步 - 損失: 0.8706 - 稀疏類別準確度: 0.6477



1834/未知 768秒 417毫秒/步 - 損失: 0.8706 - 稀疏類別準確度: 0.6477



1835/未知 769秒 418毫秒/步 - 損失: 0.8705 - 稀疏類別準確度: 0.6478



1836/未知 769秒 418毫秒/步 - 損失: 0.8704 - 稀疏類別準確度: 0.6478



1837/未知 770秒 418毫秒/步 - 損失: 0.8703 - 稀疏類別準確度: 0.6478



1838/未知 770秒 418毫秒/步 - 損失: 0.8702 - 稀疏類別準確度: 0.6478



1839/未知 771秒 418毫秒/步 - 損失: 0.8701 - 稀疏類別準確度: 0.6479



1840/未知 771秒 418毫秒/步 - 損失: 0.8700 - 稀疏類別準確度: 0.6479



1841/未知 771秒 417毫秒/步 - 損失: 0.8699 - 稀疏類別準確度: 0.6479



1842/未知 772秒 417毫秒/步 - 損失: 0.8698 - 稀疏類別準確度: 0.6480



1843/未知 772秒 417毫秒/步 - 損失: 0.8697 - 稀疏類別準確度: 0.6480



1844/未知 772秒 417毫秒/步 - 損失: 0.8696 - 稀疏類別準確度: 0.6480



1845/未知 773秒 417毫秒/步 - 損失: 0.8696 - 稀疏類別準確度: 0.6481



1846/未知 773秒 417毫秒/步 - 損失: 0.8695 - 稀疏類別準確度: 0.6481



1847/未知 774秒 417毫秒/步 - 損失: 0.8694 - 稀疏類別準確度: 0.6481



1848/未知 774秒 417毫秒/步 - 損失: 0.8693 - 稀疏類別準確度: 0.6481



1849/未知 774秒 417毫秒/步 - 損失: 0.8692 - 稀疏類別準確度: 0.6482



1850/未知 775秒 417毫秒/步 - 損失: 0.8691 - 稀疏類別準確度: 0.6482



1851/未知 775秒 417毫秒/步 - 損失: 0.8690 - 稀疏類別準確度: 0.6482



1852/未知 776秒 417毫秒/步 - 損失: 0.8689 - 稀疏類別準確度: 0.6483



1853/未知 776秒 417毫秒/步 - 損失: 0.8688 - 稀疏類別準確度: 0.6483



1854/未知 777秒 417毫秒/步 - 損失: 0.8688 - 稀疏類別準確度: 0.6483



1855/未知 777秒 417毫秒/步 - 損失: 0.8687 - 稀疏類別準確度: 0.6484



1856/未知 778秒 417毫秒/步 - 損失: 0.8686 - 稀疏類別準確度: 0.6484



1857/未知 778秒 417毫秒/步 - 損失: 0.8685 - 稀疏類別準確度: 0.6484



1858/未知 778秒 417毫秒/步 - 損失: 0.8684 - 稀疏類別準確度: 0.6484



1859/未知 779秒 417毫秒/步 - 損失: 0.8683 - 稀疏類別準確度: 0.6485



1860/未知 779秒 417毫秒/步 - 損失: 0.8682 - 稀疏類別準確度: 0.6485



1861/未知 779秒 417毫秒/步 - 損失: 0.8681 - 稀疏類別準確度: 0.6485



1862/未知 780秒 417毫秒/步 - 損失: 0.8680 - 稀疏類別準確度: 0.6486



1863/未知 780秒 417毫秒/步 - 損失: 0.8679 - 稀疏類別準確度: 0.6486



1864/未知 781秒 417毫秒/步 - 損失: 0.8679 - 稀疏類別準確度: 0.6486



1865/未知 781秒 417毫秒/步 - 損失: 0.8678 - 稀疏類別準確度: 0.6486



1865/1865 ━━━━━━━━━━━━━━━━━━━━ 781秒 417毫秒/步 - 損失: 0.8677 - 稀疏類別準確度: 0.6487

Model training finished

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
  self._interrupted_warning()

Test accuracy: 74.5%

Wide & Deep 模型達到約 79% 測試準確度。


實驗 3:深度與交叉模型

在第三個實驗中,我們建立了一個深度與交叉模型。這個模型的深度部分與前一個實驗中建立的深度部分相同。交叉部分的主要概念是以有效的方式應用顯式的特徵交叉,其中交叉特徵的程度隨著層深度而增加。

def create_deep_and_cross_model():
    inputs = create_model_inputs()
    x0 = encode_inputs(inputs, use_embedding=True)

    cross = x0
    for _ in hidden_units:
        units = cross.shape[-1]
        x = layers.Dense(units)(cross)
        cross = x0 * x + cross
    cross = layers.BatchNormalization()(cross)

    deep = x0
    for units in hidden_units:
        deep = layers.Dense(units)(deep)
        deep = layers.BatchNormalization()(deep)
        deep = layers.ReLU()(deep)
        deep = layers.Dropout(dropout_rate)(deep)

    merged = layers.concatenate([cross, deep])
    outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


deep_and_cross_model = create_deep_and_cross_model()
keras.utils.plot_model(deep_and_cross_model, show_shapes=True, rankdir="LR")

png

讓我們執行它

run_experiment(deep_and_cross_model)
Start training the model...
  1/Unknown  1s 993ms/step - loss: 2.4838 - sparse_categorical_accuracy: 0.1057


  2/Unknown  1s 465ms/step - loss: 2.4552 - sparse_categorical_accuracy: 0.1113


  3/Unknown  2s 483ms/step - loss: 2.4419 - sparse_categorical_accuracy: 0.1124


  4/Unknown  2s 462ms/step - loss: 2.4248 - sparse_categorical_accuracy: 0.1140


  5/Unknown  3s 468ms/step - loss: 2.4071 - sparse_categorical_accuracy: 0.1150


  6/Unknown  3s 460ms/step - loss: 2.3918 - sparse_categorical_accuracy: 0.1176


  7/Unknown  4s 467ms/step - loss: 2.3763 - sparse_categorical_accuracy: 0.1209


  8/Unknown  4s 466ms/step - loss: 2.3613 - sparse_categorical_accuracy: 0.1243


  9/Unknown  5s 467ms/step - loss: 2.3470 - sparse_categorical_accuracy: 0.1277


 10/Unknown  5s 465ms/step - loss: 2.3333 - sparse_categorical_accuracy: 0.1311


 11/Unknown  6s 540ms/step - loss: 2.3202 - sparse_categorical_accuracy: 0.1346


 12/Unknown  7s 558ms/step - loss: 2.3077 - sparse_categorical_accuracy: 0.1380


 13/Unknown  8s 554ms/step - loss: 2.2955 - sparse_categorical_accuracy: 0.1414


 14/Unknown  8s 549ms/step - loss: 2.2834 - sparse_categorical_accuracy: 0.1451


 15/Unknown  9s 545ms/step - loss: 2.2716 - sparse_categorical_accuracy: 0.1489


 16/Unknown  9s 540ms/step - loss: 2.2602 - sparse_categorical_accuracy: 0.1526


 17/Unknown  10s 535ms/step - loss: 2.2494 - sparse_categorical_accuracy: 0.1562


 18/Unknown  10s 532ms/step - loss: 2.2387 - sparse_categorical_accuracy: 0.1598


 19/Unknown  11s 528ms/step - loss: 2.2280 - sparse_categorical_accuracy: 0.1634


 20/Unknown  11s 524ms/step - loss: 2.2174 - sparse_categorical_accuracy: 0.1672


 21/Unknown  11s 520ms/step - loss: 2.2071 - sparse_categorical_accuracy: 0.1707


 22/Unknown  12s 518ms/step - loss: 2.1971 - sparse_categorical_accuracy: 0.1742


 23/Unknown  12s 514ms/step - loss: 2.1872 - sparse_categorical_accuracy: 0.1778


 24/Unknown  13s 513ms/step - loss: 2.1775 - sparse_categorical_accuracy: 0.1813


 25/Unknown  13s 513ms/step - loss: 2.1680 - sparse_categorical_accuracy: 0.1848


 26/Unknown  14s 512ms/step - loss: 2.1587 - sparse_categorical_accuracy: 0.1882


 27/Unknown  14s 509ms/step - loss: 2.1495 - sparse_categorical_accuracy: 0.1917


 28/Unknown  15s 509ms/step - loss: 2.1405 - sparse_categorical_accuracy: 0.1951


 29/Unknown  15s 508ms/step - loss: 2.1316 - sparse_categorical_accuracy: 0.1986


 30/Unknown  16s 505ms/step - loss: 2.1228 - sparse_categorical_accuracy: 0.2020


 31/Unknown  16s 504ms/step - loss: 2.1142 - sparse_categorical_accuracy: 0.2054


 32/Unknown  17s 502ms/step - loss: 2.1056 - sparse_categorical_accuracy: 0.2089


 33/Unknown  17s 502ms/step - loss: 2.0971 - sparse_categorical_accuracy: 0.2123


 34/Unknown  18s 502ms/step - loss: 2.0888 - sparse_categorical_accuracy: 0.2156


 35/Unknown  18s 500ms/step - loss: 2.0807 - sparse_categorical_accuracy: 0.2190


 36/Unknown  18s 497ms/step - loss: 2.0726 - sparse_categorical_accuracy: 0.2223


 37/Unknown  19s 499ms/step - loss: 2.0646 - sparse_categorical_accuracy: 0.2257


 38/Unknown  19s 497ms/step - loss: 2.0567 - sparse_categorical_accuracy: 0.2290


 39/Unknown  20s 495ms/step - loss: 2.0490 - sparse_categorical_accuracy: 0.2322


 40/Unknown  20s 494ms/step - loss: 2.0414 - sparse_categorical_accuracy: 0.2354


 41/Unknown  21s 490ms/step - loss: 2.0339 - sparse_categorical_accuracy: 0.2386


 42/Unknown  21s 487ms/step - loss: 2.0265 - sparse_categorical_accuracy: 0.2417


 43/Unknown  21s 485ms/step - loss: 2.0192 - sparse_categorical_accuracy: 0.2448


 44/Unknown  22s 483ms/step - loss: 2.0120 - sparse_categorical_accuracy: 0.2479


 45/Unknown  22s 482ms/step - loss: 2.0049 - sparse_categorical_accuracy: 0.2509


 46/Unknown  23s 480ms/step - loss: 1.9980 - sparse_categorical_accuracy: 0.2539


 47/Unknown  23s 479ms/step - loss: 1.9911 - sparse_categorical_accuracy: 0.2569


 48/Unknown  23s 478ms/step - loss: 1.9843 - sparse_categorical_accuracy: 0.2598


 49/Unknown  24s 476ms/step - loss: 1.9777 - sparse_categorical_accuracy: 0.2627


 50/Unknown  24s 475ms/step - loss: 1.9711 - sparse_categorical_accuracy: 0.2655


 51/Unknown  25s 473ms/step - loss: 1.9646 - sparse_categorical_accuracy: 0.2683


 52/Unknown  25s 472ms/step - loss: 1.9581 - sparse_categorical_accuracy: 0.2711


 53/Unknown  26s 473ms/step - loss: 1.9517 - sparse_categorical_accuracy: 0.2739


 54/Unknown  26s 474ms/step - loss: 1.9454 - sparse_categorical_accuracy: 0.2766


 55/Unknown  27s 474ms/step - loss: 1.9392 - sparse_categorical_accuracy: 0.2793


 56/Unknown  27s 474ms/step - loss: 1.9331 - sparse_categorical_accuracy: 0.2819


 57/Unknown  28s 474ms/step - loss: 1.9271 - sparse_categorical_accuracy: 0.2845


 58/Unknown  28s 474ms/step - loss: 1.9211 - sparse_categorical_accuracy: 0.2871


 59/Unknown  28s 474ms/step - loss: 1.9152 - sparse_categorical_accuracy: 0.2897


 60/Unknown  29s 473ms/step - loss: 1.9093 - sparse_categorical_accuracy: 0.2922


 61/Unknown  29s 473ms/step - loss: 1.9035 - sparse_categorical_accuracy: 0.2947


 62/Unknown  30s 473ms/step - loss: 1.8977 - sparse_categorical_accuracy: 0.2971


 63/Unknown  30s 472ms/step - loss: 1.8921 - sparse_categorical_accuracy: 0.2996


 64/Unknown  31s 471ms/step - loss: 1.8864 - sparse_categorical_accuracy: 0.3020


 65/Unknown  31s 471ms/step - loss: 1.8809 - sparse_categorical_accuracy: 0.3043


 66/Unknown  32s 470ms/step - loss: 1.8754 - sparse_categorical_accuracy: 0.3067


 67/Unknown  32s 471ms/step - loss: 1.8699 - sparse_categorical_accuracy: 0.3090


 68/Unknown  32s 470ms/step - loss: 1.8645 - sparse_categorical_accuracy: 0.3112


 69/Unknown  33s 471ms/step - loss: 1.8592 - sparse_categorical_accuracy: 0.3135


 70/Unknown  33s 470ms/step - loss: 1.8540 - sparse_categorical_accuracy: 0.3157


 71/Unknown  34s 470ms/step - loss: 1.8487 - sparse_categorical_accuracy: 0.3179


 72/Unknown  34s 470ms/step - loss: 1.8436 - sparse_categorical_accuracy: 0.3201


 73/Unknown  35s 470ms/step - loss: 1.8385 - sparse_categorical_accuracy: 0.3222


 74/Unknown  35s 470ms/step - loss: 1.8335 - sparse_categorical_accuracy: 0.3243


 75/Unknown  36s 470ms/step - loss: 1.8285 - sparse_categorical_accuracy: 0.3264


 76/Unknown  36s 471ms/step - loss: 1.8236 - sparse_categorical_accuracy: 0.3285


 77/Unknown  37s 471ms/step - loss: 1.8187 - sparse_categorical_accuracy: 0.3306


 78/Unknown  37s 471ms/step - loss: 1.8138 - sparse_categorical_accuracy: 0.3326


 79/Unknown  38s 470ms/step - loss: 1.8090 - sparse_categorical_accuracy: 0.3346


 80/Unknown  38s 469ms/step - loss: 1.8042 - sparse_categorical_accuracy: 0.3366


 81/Unknown  38s 468ms/step - loss: 1.7995 - sparse_categorical_accuracy: 0.3385


 82/Unknown  39s 467ms/step - loss: 1.7949 - sparse_categorical_accuracy: 0.3404


 83/Unknown  39s 466ms/step - loss: 1.7903 - sparse_categorical_accuracy: 0.3423


 84/Unknown  40s 466ms/step - loss: 1.7857 - sparse_categorical_accuracy: 0.3442


 85/Unknown  40s 465ms/step - loss: 1.7812 - sparse_categorical_accuracy: 0.3461


 86/Unknown  40s 464ms/step - loss: 1.7767 - sparse_categorical_accuracy: 0.3479


 87/Unknown  41s 463ms/step - loss: 1.7722 - sparse_categorical_accuracy: 0.3497


 88/Unknown  41s 463ms/step - loss: 1.7678 - sparse_categorical_accuracy: 0.3515


 89/Unknown  42s 462ms/step - loss: 1.7635 - sparse_categorical_accuracy: 0.3533


 90/Unknown  42s 462ms/step - loss: 1.7591 - sparse_categorical_accuracy: 0.3550


 91/Unknown  43s 462ms/step - loss: 1.7549 - sparse_categorical_accuracy: 0.3568


 92/Unknown  43s 462ms/step - loss: 1.7506 - sparse_categorical_accuracy: 0.3585


 93/Unknown  44s 462ms/step - loss: 1.7464 - sparse_categorical_accuracy: 0.3602


 94/Unknown  44s 462ms/step - loss: 1.7423 - sparse_categorical_accuracy: 0.3618


 95/Unknown  44s 463ms/step - loss: 1.7381 - sparse_categorical_accuracy: 0.3635


 96/Unknown  45s 463ms/step - loss: 1.7340 - sparse_categorical_accuracy: 0.3651


 97/Unknown  46s 464ms/step - loss: 1.7300 - sparse_categorical_accuracy: 0.3667


 98/Unknown  46s 465ms/step - loss: 1.7259 - sparse_categorical_accuracy: 0.3683


 99/Unknown  47s 465ms/step - loss: 1.7219 - sparse_categorical_accuracy: 0.3699


100/Unknown  47s 465ms/step - loss: 1.7180 - sparse_categorical_accuracy: 0.3715


101/Unknown  47s 465ms/step - loss: 1.7141 - sparse_categorical_accuracy: 0.3730


102/Unknown  48s 464ms/step - loss: 1.7102 - sparse_categorical_accuracy: 0.3745


103/Unknown  48s 464ms/step - loss: 1.7064 - sparse_categorical_accuracy: 0.3760


104/Unknown  49s 464ms/step - loss: 1.7025 - sparse_categorical_accuracy: 0.3775


105/Unknown  49s 465ms/step - loss: 1.6988 - sparse_categorical_accuracy: 0.3790


106/Unknown  50s 465ms/step - loss: 1.6950 - sparse_categorical_accuracy: 0.3804


107/Unknown  50s 465ms/step - loss: 1.6913 - sparse_categorical_accuracy: 0.3819


108/Unknown  51s 465ms/step - loss: 1.6876 - sparse_categorical_accuracy: 0.3833


109/Unknown  51s 465ms/step - loss: 1.6840 - sparse_categorical_accuracy: 0.3847


110/Unknown  52s 464ms/step - loss: 1.6804 - sparse_categorical_accuracy: 0.3861


111/Unknown  52s 463ms/step - loss: 1.6768 - sparse_categorical_accuracy: 0.3874


112/Unknown  52s 462ms/step - loss: 1.6732 - sparse_categorical_accuracy: 0.3888


113/Unknown  53s 461ms/step - loss: 1.6697 - sparse_categorical_accuracy: 0.3901


114/Unknown  53s 461ms/step - loss: 1.6662 - sparse_categorical_accuracy: 0.3914


115/Unknown  53s 460ms/step - loss: 1.6628 - sparse_categorical_accuracy: 0.3927


116/Unknown  54s 459ms/step - loss: 1.6593 - sparse_categorical_accuracy: 0.3940


117/Unknown  54s 459ms/step - loss: 1.6559 - sparse_categorical_accuracy: 0.3953


118/Unknown  55s 458ms/step - loss: 1.6526 - sparse_categorical_accuracy: 0.3966


119/Unknown  55s 458ms/step - loss: 1.6492 - sparse_categorical_accuracy: 0.3979


120/Unknown  55s 457ms/step - loss: 1.6459 - sparse_categorical_accuracy: 0.3991


121/Unknown  56s 458ms/step - loss: 1.6426 - sparse_categorical_accuracy: 0.4003


122/Unknown  56s 458ms/step - loss: 1.6393 - sparse_categorical_accuracy: 0.4016


123/Unknown  57s 458ms/step - loss: 1.6361 - sparse_categorical_accuracy: 0.4028


124/Unknown  57s 458ms/step - loss: 1.6329 - sparse_categorical_accuracy: 0.4040


125/Unknown  58s 459ms/step - loss: 1.6297 - sparse_categorical_accuracy: 0.4052


126/Unknown  58s 459ms/step - loss: 1.6265 - sparse_categorical_accuracy: 0.4063


127/Unknown  59s 459ms/step - loss: 1.6234 - sparse_categorical_accuracy: 0.4075


128/Unknown  59s 459ms/step - loss: 1.6203 - sparse_categorical_accuracy: 0.4087


129/Unknown  60s 459ms/step - loss: 1.6172 - sparse_categorical_accuracy: 0.4098


130/Unknown  60s 459ms/step - loss: 1.6142 - sparse_categorical_accuracy: 0.4109


131/Unknown  61s 459ms/step - loss: 1.6111 - sparse_categorical_accuracy: 0.4121


132/Unknown  61s 458ms/step - loss: 1.6081 - sparse_categorical_accuracy: 0.4132


133/Unknown  61s 457ms/step - loss: 1.6051 - sparse_categorical_accuracy: 0.4143


134/Unknown  62s 457ms/step - loss: 1.6021 - sparse_categorical_accuracy: 0.4154


135/Unknown  62s 457ms/step - loss: 1.5992 - sparse_categorical_accuracy: 0.4164


136/Unknown  63s 456ms/step - loss: 1.5963 - sparse_categorical_accuracy: 0.4175


137/Unknown  63s 456ms/step - loss: 1.5934 - sparse_categorical_accuracy: 0.4186


138/Unknown  63s 455ms/step - loss: 1.5905 - sparse_categorical_accuracy: 0.4196


139/Unknown  64s 455ms/step - loss: 1.5876 - sparse_categorical_accuracy: 0.4207


140/Unknown  64s 455ms/step - loss: 1.5848 - sparse_categorical_accuracy: 0.4217


141/Unknown  65s 455ms/step - loss: 1.5820 - sparse_categorical_accuracy: 0.4227


142/Unknown  65s 455ms/step - loss: 1.5792 - sparse_categorical_accuracy: 0.4237


143/Unknown  66s 455ms/step - loss: 1.5764 - sparse_categorical_accuracy: 0.4247


144/Unknown  66s 455ms/step - loss: 1.5737 - sparse_categorical_accuracy: 0.4257


145/Unknown  67s 455ms/step - loss: 1.5710 - sparse_categorical_accuracy: 0.4267


146/Unknown  67s 455ms/step - loss: 1.5683 - sparse_categorical_accuracy: 0.4277


147/Unknown  68s 456ms/step - loss: 1.5656 - sparse_categorical_accuracy: 0.4287


148/Unknown  68s 456ms/step - loss: 1.5629 - sparse_categorical_accuracy: 0.4297


149/Unknown  69s 456ms/step - loss: 1.5602 - sparse_categorical_accuracy: 0.4306


150/Unknown  69s 456ms/step - loss: 1.5576 - sparse_categorical_accuracy: 0.4316


151/Unknown  69s 457ms/step - loss: 1.5550 - sparse_categorical_accuracy: 0.4325


152/Unknown  70s 457ms/step - loss: 1.5524 - sparse_categorical_accuracy: 0.4335


153/Unknown  70s 457ms/step - loss: 1.5498 - sparse_categorical_accuracy: 0.4344


154/Unknown  71s 457ms/step - loss: 1.5472 - sparse_categorical_accuracy: 0.4353


155/Unknown  71s 456ms/step - loss: 1.5447 - sparse_categorical_accuracy: 0.4362


156/Unknown  72s 456ms/step - loss: 1.5421 - sparse_categorical_accuracy: 0.4371


157/Unknown  72s 455ms/step - loss: 1.5396 - sparse_categorical_accuracy: 0.4381


158/Unknown  72s 455ms/step - loss: 1.5371 - sparse_categorical_accuracy: 0.4390


159/Unknown  73s 454ms/step - loss: 1.5346 - sparse_categorical_accuracy: 0.4398


160/Unknown  73s 454ms/step - loss: 1.5322 - sparse_categorical_accuracy: 0.4407


161/Unknown  74s 454ms/step - loss: 1.5297 - sparse_categorical_accuracy: 0.4416


162/Unknown  74s 453ms/step - loss: 1.5273 - sparse_categorical_accuracy: 0.4425


163/Unknown  74s 453ms/step - loss: 1.5249 - sparse_categorical_accuracy: 0.4433


164/Unknown  75s 453ms/step - loss: 1.5225 - sparse_categorical_accuracy: 0.4442


165/Unknown  75s 453ms/step - loss: 1.5201 - sparse_categorical_accuracy: 0.4450


166/Unknown  76s 453ms/step - loss: 1.5178 - sparse_categorical_accuracy: 0.4459


167/Unknown  76s 452ms/step - loss: 1.5154 - sparse_categorical_accuracy: 0.4467


168/Unknown  77s 452ms/step - loss: 1.5131 - sparse_categorical_accuracy: 0.4475


169/Unknown  77s 452ms/step - loss: 1.5108 - sparse_categorical_accuracy: 0.4483


170/Unknown  77s 453ms/step - loss: 1.5085 - sparse_categorical_accuracy: 0.4491


171/Unknown  78s 453ms/step - loss: 1.5062 - sparse_categorical_accuracy: 0.4500


172/Unknown  78s 453ms/step - loss: 1.5039 - sparse_categorical_accuracy: 0.4508


173/Unknown  79s 453ms/step - loss: 1.5017 - sparse_categorical_accuracy: 0.4515


174/Unknown  79s 452ms/step - loss: 1.4994 - sparse_categorical_accuracy: 0.4523


175/Unknown  80s 452ms/step - loss: 1.4972 - sparse_categorical_accuracy: 0.4531


176/Unknown  80s 452ms/step - loss: 1.4950 - sparse_categorical_accuracy: 0.4539


177/Unknown  80s 451ms/step - loss: 1.4928 - sparse_categorical_accuracy: 0.4547


178/Unknown  81s 451ms/step - loss: 1.4906 - sparse_categorical_accuracy: 0.4554


179/Unknown  81s 450ms/step - loss: 1.4884 - sparse_categorical_accuracy: 0.4562


180/Unknown  82s 450ms/step - loss: 1.4863 - sparse_categorical_accuracy: 0.4570


181/Unknown  82s 450ms/step - loss: 1.4841 - sparse_categorical_accuracy: 0.4577


182/Unknown  82s 449ms/step - loss: 1.4820 - sparse_categorical_accuracy: 0.4585


183/Unknown  83s 449ms/step - loss: 1.4799 - sparse_categorical_accuracy: 0.4592


184/Unknown  83s 449ms/step - loss: 1.4778 - sparse_categorical_accuracy: 0.4599


185/Unknown  84s 449ms/step - loss: 1.4757 - sparse_categorical_accuracy: 0.4607


186/Unknown  84s 448ms/step - loss: 1.4736 - sparse_categorical_accuracy: 0.4614


187/Unknown  84s 448ms/step - loss: 1.4715 - sparse_categorical_accuracy: 0.4621


188/Unknown  85s 448ms/step - loss: 1.4695 - sparse_categorical_accuracy: 0.4628


189/Unknown  85s 448ms/step - loss: 1.4674 - sparse_categorical_accuracy: 0.4635


190/Unknown  86s 448ms/step - loss: 1.4654 - sparse_categorical_accuracy: 0.4643


191/Unknown  86s 449ms/step - loss: 1.4634 - sparse_categorical_accuracy: 0.4650


192/Unknown  87s 449ms/step - loss: 1.4614 - sparse_categorical_accuracy: 0.4656


193/Unknown  87s 449ms/step - loss: 1.4594 - sparse_categorical_accuracy: 0.4663


194/Unknown  88s 448ms/step - loss: 1.4574 - sparse_categorical_accuracy: 0.4670


195/Unknown  88s 448ms/step - loss: 1.4554 - sparse_categorical_accuracy: 0.4677


196/Unknown  88s 449ms/step - loss: 1.4535 - sparse_categorical_accuracy: 0.4684


197/Unknown  89s 449ms/step - loss: 1.4515 - sparse_categorical_accuracy: 0.4691


198/Unknown  89s 449ms/step - loss: 1.4496 - sparse_categorical_accuracy: 0.4697


199/Unknown  90s 449ms/step - loss: 1.4476 - sparse_categorical_accuracy: 0.4704


200/Unknown  90s 449ms/step - loss: 1.4457 - sparse_categorical_accuracy: 0.4711


201/Unknown  91s 449ms/step - loss: 1.4438 - sparse_categorical_accuracy: 0.4717


202/Unknown  91s 449ms/step - loss: 1.4419 - sparse_categorical_accuracy: 0.4724


203/Unknown  92s 449ms/step - loss: 1.4401 - sparse_categorical_accuracy: 0.4730


204/Unknown  92s 449ms/step - loss: 1.4382 - sparse_categorical_accuracy: 0.4737


205/Unknown  92s 448ms/step - loss: 1.4363 - sparse_categorical_accuracy: 0.4743


206/Unknown  93s 448ms/step - loss: 1.4345 - sparse_categorical_accuracy: 0.4749


207/Unknown  93s 447ms/step - loss: 1.4327 - sparse_categorical_accuracy: 0.4756


208/Unknown  94s 447ms/step - loss: 1.4308 - sparse_categorical_accuracy: 0.4762


209/Unknown  94s 447ms/step - loss: 1.4290 - sparse_categorical_accuracy: 0.4768


210/Unknown  94s 446ms/step - loss: 1.4272 - sparse_categorical_accuracy: 0.4774


211/Unknown  95s 446ms/step - loss: 1.4254 - sparse_categorical_accuracy: 0.4780


212/Unknown  95s 446ms/step - loss: 1.4237 - sparse_categorical_accuracy: 0.4786


213/Unknown  95s 446ms/step - loss: 1.4219 - sparse_categorical_accuracy: 0.4793


214/Unknown  96s 445ms/step - loss: 1.4201 - sparse_categorical_accuracy: 0.4799


215/Unknown  96s 445ms/step - loss: 1.4184 - sparse_categorical_accuracy: 0.4805


216/Unknown  97s 445ms/step - loss: 1.4166 - sparse_categorical_accuracy: 0.4811


217/Unknown  97s 445ms/step - loss: 1.4149 - sparse_categorical_accuracy: 0.4816


218/Unknown  98s 445ms/step - loss: 1.4132 - sparse_categorical_accuracy: 0.4822


219/Unknown  98s 445ms/step - loss: 1.4115 - sparse_categorical_accuracy: 0.4828


220/Unknown  98s 445ms/step - loss: 1.4098 - sparse_categorical_accuracy: 0.4834


221/Unknown  99s 445ms/step - loss: 1.4081 - sparse_categorical_accuracy: 0.4840


222/Unknown  99s 445ms/step - loss: 1.4064 - sparse_categorical_accuracy: 0.4846


223/Unknown  100s 444ms/step - loss: 1.4047 - sparse_categorical_accuracy: 0.4851


224/Unknown  100s 444ms/step - loss: 1.4030 - sparse_categorical_accuracy: 0.4857


225/Unknown  100s 444ms/step - loss: 1.4014 - sparse_categorical_accuracy: 0.4863


226/Unknown  101s 443ms/step - loss: 1.3997 - sparse_categorical_accuracy: 0.4868


227/Unknown  101s 442ms/step - loss: 1.3981 - sparse_categorical_accuracy: 0.4874


228/Unknown  101s 442ms/step - loss: 1.3965 - sparse_categorical_accuracy: 0.4879


229/Unknown  102s 441ms/step - loss: 1.3948 - sparse_categorical_accuracy: 0.4885


230/Unknown  102s 441ms/step - loss: 1.3932 - sparse_categorical_accuracy: 0.4890


231/Unknown  102s 441ms/step - loss: 1.3916 - sparse_categorical_accuracy: 0.4896


232/Unknown  103s 440ms/step - loss: 1.3900 - sparse_categorical_accuracy: 0.4901


233/Unknown  103s 440ms/step - loss: 1.3884 - sparse_categorical_accuracy: 0.4907


234/Unknown  103s 440ms/step - loss: 1.3868 - sparse_categorical_accuracy: 0.4912


235/Unknown  104s 439ms/step - loss: 1.3853 - sparse_categorical_accuracy: 0.4917


236/Unknown  104s 439ms/step - loss: 1.3837 - sparse_categorical_accuracy: 0.4923


237/Unknown  105s 439ms/step - loss: 1.3821 - sparse_categorical_accuracy: 0.4928


238/Unknown  105s 439ms/step - loss: 1.3806 - sparse_categorical_accuracy: 0.4933


239/Unknown  105s 439ms/step - loss: 1.3791 - sparse_categorical_accuracy: 0.4939


240/Unknown  106s 439ms/step - loss: 1.3775 - sparse_categorical_accuracy: 0.4944


241/Unknown  106s 439ms/step - loss: 1.3760 - sparse_categorical_accuracy: 0.4949


242/Unknown  107s 439ms/step - loss: 1.3745 - sparse_categorical_accuracy: 0.4954


243/Unknown  107s 440ms/step - loss: 1.3730 - sparse_categorical_accuracy: 0.4959


244/Unknown  108s 440ms/step - loss: 1.3715 - sparse_categorical_accuracy: 0.4964


245/Unknown  108s 440ms/step - loss: 1.3700 - sparse_categorical_accuracy: 0.4969


246/Unknown  109s 440ms/step - loss: 1.3685 - sparse_categorical_accuracy: 0.4974


247/Unknown  109s 440ms/step - loss: 1.3670 - sparse_categorical_accuracy: 0.4979


248/Unknown  110s 440ms/step - loss: 1.3655 - sparse_categorical_accuracy: 0.4984


249/Unknown  110s 440ms/step - loss: 1.3641 - sparse_categorical_accuracy: 0.4989


250/Unknown  111s 440ms/step - loss: 1.3626 - sparse_categorical_accuracy: 0.4994


251/Unknown  111s 440ms/step - loss: 1.3612 - sparse_categorical_accuracy: 0.4999


252/Unknown  111s 440ms/step - loss: 1.3597 - sparse_categorical_accuracy: 0.5004


253/Unknown  112s 440ms/step - loss: 1.3583 - sparse_categorical_accuracy: 0.5009


254/Unknown  112s 440ms/step - loss: 1.3569 - sparse_categorical_accuracy: 0.5014


255/Unknown  113s 440ms/step - loss: 1.3554 - sparse_categorical_accuracy: 0.5018


256/Unknown  113s 439ms/step - loss: 1.3540 - sparse_categorical_accuracy: 0.5023


257/Unknown  113s 439ms/step - loss: 1.3526 - sparse_categorical_accuracy: 0.5028


258/Unknown  114s 439ms/step - loss: 1.3512 - sparse_categorical_accuracy: 0.5032


259/Unknown  114s 439ms/step - loss: 1.3498 - sparse_categorical_accuracy: 0.5037


260/Unknown  115s 438ms/step - loss: 1.3484 - sparse_categorical_accuracy: 0.5042


261/Unknown  115s 438ms/step - loss: 1.3471 - sparse_categorical_accuracy: 0.5046


262/Unknown  115s 438ms/step - loss: 1.3457 - sparse_categorical_accuracy: 0.5051


263/Unknown  116s 438ms/step - loss: 1.3443 - sparse_categorical_accuracy: 0.5055


264/Unknown  116s 438ms/step - loss: 1.3430 - sparse_categorical_accuracy: 0.5060


265/Unknown  117s 438ms/step - loss: 1.3416 - sparse_categorical_accuracy: 0.5065


266/Unknown  117s 437ms/step - loss: 1.3403 - sparse_categorical_accuracy: 0.5069


267/Unknown  117s 437ms/step - loss: 1.3389 - sparse_categorical_accuracy: 0.5074


268/Unknown  118s 437ms/step - loss: 1.3376 - sparse_categorical_accuracy: 0.5078


269/Unknown  118s 438ms/step - loss: 1.3363 - sparse_categorical_accuracy: 0.5082


270/Unknown  119s 438ms/step - loss: 1.3349 - sparse_categorical_accuracy: 0.5087


271/Unknown  119s 438ms/step - loss: 1.3336 - sparse_categorical_accuracy: 0.5091


272/Unknown  120s 438ms/step - loss: 1.3323 - sparse_categorical_accuracy: 0.5096


273/Unknown  120s 438ms/step - loss: 1.3310 - sparse_categorical_accuracy: 0.5100


274/Unknown  121s 439ms/step - loss: 1.3297 - sparse_categorical_accuracy: 0.5104


275/Unknown  121s 439ms/step - loss: 1.3284 - sparse_categorical_accuracy: 0.5108


276/Unknown  122s 439ms/step - loss: 1.3271 - sparse_categorical_accuracy: 0.5113


277/Unknown  122s 439ms/step - loss: 1.3259 - sparse_categorical_accuracy: 0.5117


278/Unknown  123s 439ms/step - loss: 1.3246 - sparse_categorical_accuracy: 0.5121


279/Unknown  123s 439ms/step - loss: 1.3233 - sparse_categorical_accuracy: 0.5125


280/Unknown  123s 439ms/step - loss: 1.3221 - sparse_categorical_accuracy: 0.5130


281/Unknown  124s 439ms/step - loss: 1.3208 - sparse_categorical_accuracy: 0.5134


282/Unknown  124s 439ms/step - loss: 1.3196 - sparse_categorical_accuracy: 0.5138


283/Unknown  125s 439ms/step - loss: 1.3183 - sparse_categorical_accuracy: 0.5142


284/Unknown  125s 439ms/step - loss: 1.3171 - sparse_categorical_accuracy: 0.5146


285/Unknown  126s 439ms/step - loss: 1.3158 - sparse_categorical_accuracy: 0.5150


286/Unknown  126s 438ms/step - loss: 1.3146 - sparse_categorical_accuracy: 0.5154


287/Unknown  126s 438ms/step - loss: 1.3134 - sparse_categorical_accuracy: 0.5158


288/Unknown  127s 438ms/step - loss: 1.3122 - sparse_categorical_accuracy: 0.5162


289/Unknown  127s 438ms/step - loss: 1.3110 - sparse_categorical_accuracy: 0.5166


290/Unknown  128s 438ms/step - loss: 1.3097 - sparse_categorical_accuracy: 0.5170


291/Unknown  128s 438ms/step - loss: 1.3085 - sparse_categorical_accuracy: 0.5174


292/Unknown  128s 438ms/step - loss: 1.3073 - sparse_categorical_accuracy: 0.5178


293/Unknown  129s 437ms/step - loss: 1.3062 - sparse_categorical_accuracy: 0.5182


294/Unknown  129s 437ms/step - loss: 1.3050 - sparse_categorical_accuracy: 0.5186


295/Unknown  130s 437ms/step - loss: 1.3038 - sparse_categorical_accuracy: 0.5190


296/Unknown  130s 438ms/step - loss: 1.3026 - sparse_categorical_accuracy: 0.5194


297/Unknown  131s 438ms/step - loss: 1.3014 - sparse_categorical_accuracy: 0.5198


298/Unknown  131s 438ms/step - loss: 1.3003 - sparse_categorical_accuracy: 0.5202


299/Unknown  131s 438ms/step - loss: 1.2991 - sparse_categorical_accuracy: 0.5205


300/Unknown  132s 438ms/step - loss: 1.2980 - sparse_categorical_accuracy: 0.5209


301/Unknown  132s 438ms/step - loss: 1.2968 - sparse_categorical_accuracy: 0.5213


302/Unknown  133s 438ms/step - loss: 1.2957 - sparse_categorical_accuracy: 0.5217


303/Unknown  133s 438ms/step - loss: 1.2945 - sparse_categorical_accuracy: 0.5221


304/Unknown  134s 438ms/step - loss: 1.2934 - sparse_categorical_accuracy: 0.5224


305/Unknown  134s 438ms/step - loss: 1.2923 - sparse_categorical_accuracy: 0.5228


306/Unknown  135s 439ms/step - loss: 1.2911 - sparse_categorical_accuracy: 0.5232


307/Unknown  135s 439ms/step - loss: 1.2900 - sparse_categorical_accuracy: 0.5235


308/Unknown  136s 439ms/step - loss: 1.2889 - sparse_categorical_accuracy: 0.5239


309/Unknown  136s 439ms/step - loss: 1.2878 - sparse_categorical_accuracy: 0.5243


310/Unknown  137s 439ms/step - loss: 1.2867 - sparse_categorical_accuracy: 0.5246


311/Unknown  137s 439ms/step - loss: 1.2856 - sparse_categorical_accuracy: 0.5250


312/Unknown  137s 439ms/step - loss: 1.2845 - sparse_categorical_accuracy: 0.5254


313/Unknown  138s 439ms/step - loss: 1.2834 - sparse_categorical_accuracy: 0.5257


314/Unknown  138s 439ms/step - loss: 1.2823 - sparse_categorical_accuracy: 0.5261


315/Unknown  139s 439ms/step - loss: 1.2812 - sparse_categorical_accuracy: 0.5264


316/Unknown  139s 439ms/step - loss: 1.2801 - sparse_categorical_accuracy: 0.5268


317/Unknown  140s 439ms/step - loss: 1.2790 - sparse_categorical_accuracy: 0.5271


318/Unknown  140s 439ms/step - loss: 1.2780 - sparse_categorical_accuracy: 0.5275


319/Unknown  141s 439ms/step - loss: 1.2769 - sparse_categorical_accuracy: 0.5278


320/Unknown  141s 439ms/step - loss: 1.2758 - sparse_categorical_accuracy: 0.5282


321/Unknown  142s 439ms/step - loss: 1.2748 - sparse_categorical_accuracy: 0.5285


322/Unknown  142s 439ms/step - loss: 1.2737 - sparse_categorical_accuracy: 0.5289


323/Unknown  143s 439ms/step - loss: 1.2727 - sparse_categorical_accuracy: 0.5292


324/Unknown  143s 440ms/step - loss: 1.2716 - sparse_categorical_accuracy: 0.5296


325/Unknown  143s 440ms/step - loss: 1.2706 - sparse_categorical_accuracy: 0.5299


326/Unknown  144s 439ms/step - loss: 1.2695 - sparse_categorical_accuracy: 0.5303


327/Unknown  144s 439ms/step - loss: 1.2685 - sparse_categorical_accuracy: 0.5306


328/Unknown  145s 439ms/step - loss: 1.2675 - sparse_categorical_accuracy: 0.5309


329/Unknown  145s 439ms/step - loss: 1.2664 - sparse_categorical_accuracy: 0.5313


330/Unknown  145s 439ms/step - loss: 1.2654 - sparse_categorical_accuracy: 0.5316


331/Unknown  146s 438ms/step - loss: 1.2644 - sparse_categorical_accuracy: 0.5319


332/Unknown  146s 438ms/step - loss: 1.2634 - sparse_categorical_accuracy: 0.5323


333/Unknown  147s 438ms/step - loss: 1.2624 - sparse_categorical_accuracy: 0.5326


334/Unknown  147s 438ms/step - loss: 1.2614 - sparse_categorical_accuracy: 0.5329


335/Unknown  147s 438ms/step - loss: 1.2604 - sparse_categorical_accuracy: 0.5333


336/Unknown  148s 438ms/step - loss: 1.2594 - sparse_categorical_accuracy: 0.5336


337/Unknown  148s 438ms/step - loss: 1.2584 - sparse_categorical_accuracy: 0.5339


338/Unknown  148s 438ms/step - loss: 1.2574 - sparse_categorical_accuracy: 0.5342


339/Unknown  149s 438ms/step - loss: 1.2564 - sparse_categorical_accuracy: 0.5345


340/Unknown  149s 438ms/step - loss: 1.2554 - sparse_categorical_accuracy: 0.5349


341/Unknown  150s 438ms/step - loss: 1.2545 - sparse_categorical_accuracy: 0.5352


342/Unknown  150s 438ms/step - loss: 1.2535 - sparse_categorical_accuracy: 0.5355


343/Unknown  151s 438ms/step - loss: 1.2525 - sparse_categorical_accuracy: 0.5358


344/Unknown  151s 438ms/step - loss: 1.2515 - sparse_categorical_accuracy: 0.5361


345/Unknown  152s 438ms/step - loss: 1.2506 - sparse_categorical_accuracy: 0.5364


346/Unknown  152s 439ms/step - loss: 1.2496 - sparse_categorical_accuracy: 0.5368


347/Unknown  153s 439ms/step - loss: 1.2487 - sparse_categorical_accuracy: 0.5371


348/Unknown  153s 439ms/step - loss: 1.2477 - sparse_categorical_accuracy: 0.5374


349/Unknown  154s 439ms/step - loss: 1.2468 - sparse_categorical_accuracy: 0.5377


350/Unknown  154s 439ms/step - loss: 1.2458 - sparse_categorical_accuracy: 0.5380


351/Unknown  154s 438ms/step - loss: 1.2449 - sparse_categorical_accuracy: 0.5383


352/Unknown  155s 439ms/step - loss: 1.2439 - sparse_categorical_accuracy: 0.5386


353/Unknown  155s 439ms/step - loss: 1.2430 - sparse_categorical_accuracy: 0.5389


354/Unknown  156s 439ms/step - loss: 1.2421 - sparse_categorical_accuracy: 0.5392


355/Unknown  156s 439ms/step - loss: 1.2412 - sparse_categorical_accuracy: 0.5395


356/Unknown  157s 439ms/step - loss: 1.2402 - sparse_categorical_accuracy: 0.5398


357/Unknown  157s 439ms/step - loss: 1.2393 - sparse_categorical_accuracy: 0.5401


358/Unknown  158s 439ms/step - loss: 1.2384 - sparse_categorical_accuracy: 0.5404


359/Unknown  158s 439ms/step - loss: 1.2375 - sparse_categorical_accuracy: 0.5407


360/Unknown  159s 439ms/step - loss: 1.2366 - sparse_categorical_accuracy: 0.5410


361/Unknown  159s 439ms/step - loss: 1.2357 - sparse_categorical_accuracy: 0.5413


362/Unknown  160s 440ms/step - loss: 1.2348 - sparse_categorical_accuracy: 0.5416


363/Unknown  160s 440ms/step - loss: 1.2339 - sparse_categorical_accuracy: 0.5419


364/Unknown  161s 440ms/step - loss: 1.2330 - sparse_categorical_accuracy: 0.5421


365/Unknown  161s 440ms/step - loss: 1.2321 - sparse_categorical_accuracy: 0.5424


366/Unknown  162s 440ms/step - loss: 1.2312 - sparse_categorical_accuracy: 0.5427


367/Unknown  162s 441ms/step - loss: 1.2303 - sparse_categorical_accuracy: 0.5430


368/Unknown  163s 441ms/step - loss: 1.2294 - sparse_categorical_accuracy: 0.5433


369/Unknown  163s 441ms/step - loss: 1.2285 - sparse_categorical_accuracy: 0.5436


370/Unknown  164s 441ms/step - loss: 1.2277 - sparse_categorical_accuracy: 0.5439


371/Unknown  164s 441ms/step - loss: 1.2268 - sparse_categorical_accuracy: 0.5441


372/Unknown  165s 441ms/step - loss: 1.2259 - sparse_categorical_accuracy: 0.5444


373/Unknown  165s 441ms/step - loss: 1.2251 - sparse_categorical_accuracy: 0.5447


374/Unknown  165s 441ms/step - loss: 1.2242 - sparse_categorical_accuracy: 0.5450


375/Unknown  166s 441ms/step - loss: 1.2233 - sparse_categorical_accuracy: 0.5453


376/Unknown  166s 441ms/step - loss: 1.2225 - sparse_categorical_accuracy: 0.5455


377/Unknown  167s 440ms/step - loss: 1.2216 - sparse_categorical_accuracy: 0.5458


378/Unknown  167s 440ms/step - loss: 1.2208 - sparse_categorical_accuracy: 0.5461


379/Unknown  167s 440ms/step - loss: 1.2199 - sparse_categorical_accuracy: 0.5464


380/Unknown  168s 440ms/step - loss: 1.2191 - sparse_categorical_accuracy: 0.5466


381/Unknown  168s 440ms/step - loss: 1.2182 - sparse_categorical_accuracy: 0.5469


382/Unknown  169s 440ms/step - loss: 1.2174 - sparse_categorical_accuracy: 0.5472


383/Unknown  169s 440ms/step - loss: 1.2165 - sparse_categorical_accuracy: 0.5475


384/Unknown  169s 440ms/step - loss: 1.2157 - sparse_categorical_accuracy: 0.5477


385/Unknown  170s 439ms/step - loss: 1.2149 - sparse_categorical_accuracy: 0.5480


386/Unknown  170s 440ms/step - loss: 1.2140 - sparse_categorical_accuracy: 0.5483


387/Unknown  171s 440ms/step - loss: 1.2132 - sparse_categorical_accuracy: 0.5485


388/Unknown  171s 440ms/step - loss: 1.2124 - sparse_categorical_accuracy: 0.5488


389/Unknown  172s 440ms/step - loss: 1.2116 - sparse_categorical_accuracy: 0.5491


390/Unknown  172s 440ms/step - loss: 1.2108 - sparse_categorical_accuracy: 0.5493


391/Unknown  173s 440ms/step - loss: 1.2099 - sparse_categorical_accuracy: 0.5496


392/Unknown  173s 440ms/step - loss: 1.2091 - sparse_categorical_accuracy: 0.5499


393/Unknown  174s 440ms/step - loss: 1.2083 - sparse_categorical_accuracy: 0.5501


394/Unknown  174s 440ms/step - loss: 1.2075 - sparse_categorical_accuracy: 0.5504


395/Unknown  175s 440ms/step - loss: 1.2067 - sparse_categorical_accuracy: 0.5506


396/Unknown  175s 441ms/step - loss: 1.2059 - sparse_categorical_accuracy: 0.5509


397/Unknown  175s 441ms/step - loss: 1.2051 - sparse_categorical_accuracy: 0.5512


398/Unknown  176s 440ms/step - loss: 1.2043 - sparse_categorical_accuracy: 0.5514


399/Unknown  176s 440ms/step - loss: 1.2035 - sparse_categorical_accuracy: 0.5517


400/Unknown  177s 440ms/step - loss: 1.2027 - sparse_categorical_accuracy: 0.5519


401/Unknown  177s 441ms/step - loss: 1.2019 - sparse_categorical_accuracy: 0.5522


402/Unknown  178s 441ms/step - loss: 1.2011 - sparse_categorical_accuracy: 0.5524


403/Unknown  178s 441ms/step - loss: 1.2004 - sparse_categorical_accuracy: 0.5527


404/Unknown  179s 441ms/step - loss: 1.1996 - sparse_categorical_accuracy: 0.5529


405/Unknown  179s 441ms/step - loss: 1.1988 - sparse_categorical_accuracy: 0.5532


406/Unknown  180s 441ms/step - loss: 1.1980 - sparse_categorical_accuracy: 0.5534


407/Unknown  180s 441ms/step - loss: 1.1973 - sparse_categorical_accuracy: 0.5537


408/Unknown  181s 441ms/step - loss: 1.1965 - sparse_categorical_accuracy: 0.5539


409/Unknown  181s 442ms/step - loss: 1.1957 - sparse_categorical_accuracy: 0.5542


410/Unknown  182s 442ms/step - loss: 1.1950 - sparse_categorical_accuracy: 0.5544


411/Unknown  182s 442ms/step - loss: 1.1942 - sparse_categorical_accuracy: 0.5547


412/Unknown  183s 442ms/step - loss: 1.1934 - sparse_categorical_accuracy: 0.5549


413/Unknown  183s 442ms/step - loss: 1.1927 - sparse_categorical_accuracy: 0.5552


414/Unknown  184s 442ms/step - loss: 1.1919 - sparse_categorical_accuracy: 0.5554


415/Unknown  184s 442ms/step - loss: 1.1912 - sparse_categorical_accuracy: 0.5556


416/Unknown  185s 442ms/step - loss: 1.1904 - sparse_categorical_accuracy: 0.5559


417/Unknown  185s 443ms/step - loss: 1.1897 - sparse_categorical_accuracy: 0.5561


418/Unknown  186s 443ms/step - loss: 1.1890 - sparse_categorical_accuracy: 0.5564


419/Unknown  186s 443ms/step - loss: 1.1882 - sparse_categorical_accuracy: 0.5566


420/Unknown  187s 443ms/step - loss: 1.1875 - sparse_categorical_accuracy: 0.5568


421/Unknown  187s 443ms/step - loss: 1.1867 - sparse_categorical_accuracy: 0.5571


422/Unknown  187s 443ms/step - loss: 1.1860 - sparse_categorical_accuracy: 0.5573


423/Unknown  188s 443ms/step - loss: 1.1853 - sparse_categorical_accuracy: 0.5575


424/Unknown  188s 443ms/step - loss: 1.1846 - sparse_categorical_accuracy: 0.5578


425/Unknown  189s 443ms/step - loss: 1.1838 - sparse_categorical_accuracy: 0.5580


426/Unknown  190s 444ms/step - loss: 1.1831 - sparse_categorical_accuracy: 0.5582


427/Unknown  190s 444ms/step - loss: 1.1824 - sparse_categorical_accuracy: 0.5585


428/Unknown  190s 444ms/step - loss: 1.1817 - sparse_categorical_accuracy: 0.5587


429/Unknown  191s 444ms/step - loss: 1.1810 - sparse_categorical_accuracy: 0.5589


430/Unknown  191s 444ms/step - loss: 1.1802 - sparse_categorical_accuracy: 0.5592


431/Unknown  192s 444ms/step - loss: 1.1795 - sparse_categorical_accuracy: 0.5594


432/Unknown  192s 444ms/step - loss: 1.1788 - sparse_categorical_accuracy: 0.5596


433/Unknown  193s 444ms/step - loss: 1.1781 - sparse_categorical_accuracy: 0.5599


434/Unknown  193s 444ms/step - loss: 1.1774 - sparse_categorical_accuracy: 0.5601


435/Unknown  195s 446ms/step - loss: 1.1767 - sparse_categorical_accuracy: 0.5603


436/Unknown  195s 447ms/step - loss: 1.1760 - sparse_categorical_accuracy: 0.5605


437/Unknown  196s 447ms/step - loss: 1.1753 - sparse_categorical_accuracy: 0.5608


438/Unknown  196s 447ms/step - loss: 1.1746 - sparse_categorical_accuracy: 0.5610


439/Unknown  197s 447ms/step - loss: 1.1739 - sparse_categorical_accuracy: 0.5612


440/Unknown  197s 447ms/step - loss: 1.1732 - sparse_categorical_accuracy: 0.5614


441/Unknown  198s 447ms/step - loss: 1.1726 - sparse_categorical_accuracy: 0.5616


442/Unknown  198s 447ms/step - loss: 1.1719 - sparse_categorical_accuracy: 0.5619


443/Unknown  199s 447ms/step - loss: 1.1712 - sparse_categorical_accuracy: 0.5621


444/Unknown  199s 447ms/step - loss: 1.1705 - sparse_categorical_accuracy: 0.5623


445/Unknown  199s 447ms/step - loss: 1.1698 - sparse_categorical_accuracy: 0.5625


446/Unknown  200s 447ms/step - loss: 1.1691 - sparse_categorical_accuracy: 0.5627


447/Unknown  200s 447ms/step - loss: 1.1685 - sparse_categorical_accuracy: 0.5629


448/Unknown  201s 447ms/step - loss: 1.1678 - sparse_categorical_accuracy: 0.5632


449/Unknown  201s 447ms/step - loss: 1.1671 - sparse_categorical_accuracy: 0.5634


450/Unknown  202s 447ms/step - loss: 1.1665 - sparse_categorical_accuracy: 0.5636


451/Unknown  202s 447ms/step - loss: 1.1658 - sparse_categorical_accuracy: 0.5638


452/Unknown  203s 448ms/step - loss: 1.1651 - sparse_categorical_accuracy: 0.5640


453/Unknown  203s 448ms/step - loss: 1.1645 - sparse_categorical_accuracy: 0.5642


454/Unknown  204s 448ms/step - loss: 1.1638 - sparse_categorical_accuracy: 0.5644


455/Unknown  204s 448ms/step - loss: 1.1631 - sparse_categorical_accuracy: 0.5647


456/Unknown  205s 448ms/step - loss: 1.1625 - sparse_categorical_accuracy: 0.5649


457/Unknown  205s 448ms/step - loss: 1.1618 - sparse_categorical_accuracy: 0.5651


458/Unknown  206s 448ms/step - loss: 1.1612 - sparse_categorical_accuracy: 0.5653


459/Unknown  206s 448ms/step - loss: 1.1605 - sparse_categorical_accuracy: 0.5655


460/Unknown  207s 448ms/step - loss: 1.1599 - sparse_categorical_accuracy: 0.5657


461/Unknown  207s 448ms/step - loss: 1.1592 - sparse_categorical_accuracy: 0.5659


462/Unknown  208s 448ms/step - loss: 1.1586 - sparse_categorical_accuracy: 0.5661


463/Unknown  208s 448ms/step - loss: 1.1579 - sparse_categorical_accuracy: 0.5663


464/Unknown  209s 448ms/step - loss: 1.1573 - sparse_categorical_accuracy: 0.5665


465/Unknown  209s 448ms/step - loss: 1.1566 - sparse_categorical_accuracy: 0.5667


466/Unknown  210s 448ms/step - loss: 1.1560 - sparse_categorical_accuracy: 0.5669


467/Unknown  210s 449ms/step - loss: 1.1554 - sparse_categorical_accuracy: 0.5671


468/Unknown  211s 449ms/step - loss: 1.1547 - sparse_categorical_accuracy: 0.5674


469/Unknown  211s 449ms/step - loss: 1.1541 - sparse_categorical_accuracy: 0.5676


470/Unknown  212s 449ms/step - loss: 1.1535 - sparse_categorical_accuracy: 0.5678


471/Unknown  212s 449ms/step - loss: 1.1528 - sparse_categorical_accuracy: 0.5680


472/Unknown  212s 449ms/step - loss: 1.1522 - sparse_categorical_accuracy: 0.5682


473/Unknown  213s 449ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.5684


474/Unknown  213s 449ms/step - loss: 1.1510 - sparse_categorical_accuracy: 0.5686


475/Unknown  214s 449ms/step - loss: 1.1503 - sparse_categorical_accuracy: 0.5688


476/Unknown  214s 449ms/step - loss: 1.1497 - sparse_categorical_accuracy: 0.5690


477/Unknown  215s 449ms/step - loss: 1.1491 - sparse_categorical_accuracy: 0.5692


478/Unknown  215s 449ms/step - loss: 1.1485 - sparse_categorical_accuracy: 0.5694


479/Unknown  216s 449ms/step - loss: 1.1479 - sparse_categorical_accuracy: 0.5695


480/Unknown  216s 450ms/step - loss: 1.1473 - sparse_categorical_accuracy: 0.5697


481/Unknown  217s 450ms/step - loss: 1.1466 - sparse_categorical_accuracy: 0.5699


482/Unknown  217s 450ms/step - loss: 1.1460 - sparse_categorical_accuracy: 0.5701


483/Unknown  218s 450ms/step - loss: 1.1454 - sparse_categorical_accuracy: 0.5703


484/Unknown  218s 450ms/step - loss: 1.1448 - sparse_categorical_accuracy: 0.5705


485/Unknown  219s 450ms/step - loss: 1.1442 - sparse_categorical_accuracy: 0.5707


486/Unknown  219s 450ms/step - loss: 1.1436 - sparse_categorical_accuracy: 0.5709


487/Unknown  220s 450ms/step - loss: 1.1430 - sparse_categorical_accuracy: 0.5711


488/Unknown  220s 450ms/step - loss: 1.1424 - sparse_categorical_accuracy: 0.5713


489/Unknown  221s 450ms/step - loss: 1.1418 - sparse_categorical_accuracy: 0.5715


490/Unknown  221s 450ms/step - loss: 1.1412 - sparse_categorical_accuracy: 0.5717


491/Unknown  222s 450ms/step - loss: 1.1406 - sparse_categorical_accuracy: 0.5719


492/Unknown  222s 450ms/step - loss: 1.1400 - sparse_categorical_accuracy: 0.5720


493/Unknown  223s 450ms/step - loss: 1.1394 - sparse_categorical_accuracy: 0.5722


494/Unknown  223s 451ms/step - loss: 1.1389 - sparse_categorical_accuracy: 0.5724


495/Unknown  224s 451ms/step - loss: 1.1383 - sparse_categorical_accuracy: 0.5726


496/Unknown  224s 451ms/step - loss: 1.1377 - sparse_categorical_accuracy: 0.5728


497/Unknown  225s 451ms/step - loss: 1.1371 - sparse_categorical_accuracy: 0.5730


498/Unknown  225s 451ms/step - loss: 1.1365 - sparse_categorical_accuracy: 0.5732


499/Unknown  226s 451ms/step - loss: 1.1359 - sparse_categorical_accuracy: 0.5734


500/Unknown  226s 451ms/step - loss: 1.1354 - sparse_categorical_accuracy: 0.5735


501/Unknown  227s 451ms/step - loss: 1.1348 - sparse_categorical_accuracy: 0.5737


502/Unknown  227s 451ms/step - loss: 1.1342 - sparse_categorical_accuracy: 0.5739


503/Unknown  228s 451ms/step - loss: 1.1336 - sparse_categorical_accuracy: 0.5741


504/Unknown  228s 451ms/step - loss: 1.1330 - sparse_categorical_accuracy: 0.5743


505/Unknown  229s 452ms/step - loss: 1.1325 - sparse_categorical_accuracy: 0.5745


506/Unknown  229s 452ms/step - loss: 1.1319 - sparse_categorical_accuracy: 0.5746


507/Unknown  230s 452ms/step - loss: 1.1313 - sparse_categorical_accuracy: 0.5748


508/Unknown  230s 452ms/step - loss: 1.1308 - sparse_categorical_accuracy: 0.5750


509/Unknown  230s 451ms/step - loss: 1.1302 - sparse_categorical_accuracy: 0.5752


510/Unknown  231s 452ms/step - loss: 1.1296 - sparse_categorical_accuracy: 0.5754


511/Unknown  231s 452ms/step - loss: 1.1291 - sparse_categorical_accuracy: 0.5755


512/Unknown  232s 452ms/step - loss: 1.1285 - sparse_categorical_accuracy: 0.5757


513/Unknown  232s 452ms/step - loss: 1.1280 - sparse_categorical_accuracy: 0.5759


514/Unknown  233s 452ms/step - loss: 1.1274 - sparse_categorical_accuracy: 0.5761


515/Unknown  233s 452ms/step - loss: 1.1268 - sparse_categorical_accuracy: 0.5762


516/Unknown  234s 452ms/step - loss: 1.1263 - sparse_categorical_accuracy: 0.5764


517/Unknown  234s 452ms/step - loss: 1.1257 - sparse_categorical_accuracy: 0.5766


518/Unknown  235s 452ms/step - loss: 1.1252 - sparse_categorical_accuracy: 0.5768


519/Unknown  235s 452ms/step - loss: 1.1246 - sparse_categorical_accuracy: 0.5769


520/Unknown  236s 452ms/step - loss: 1.1241 - sparse_categorical_accuracy: 0.5771


521/Unknown  236s 452ms/step - loss: 1.1236 - sparse_categorical_accuracy: 0.5773


522/Unknown  237s 452ms/step - loss: 1.1230 - sparse_categorical_accuracy: 0.5775


523/Unknown  237s 452ms/step - loss: 1.1225 - sparse_categorical_accuracy: 0.5776


524/Unknown  238s 452ms/step - loss: 1.1219 - sparse_categorical_accuracy: 0.5778


525/Unknown  238s 452ms/step - loss: 1.1214 - sparse_categorical_accuracy: 0.5780


526/Unknown  239s 453ms/step - loss: 1.1208 - sparse_categorical_accuracy: 0.5782


527/Unknown  239s 453ms/step - loss: 1.1203 - sparse_categorical_accuracy: 0.5783


528/Unknown  240s 453ms/step - loss: 1.1198 - sparse_categorical_accuracy: 0.5785


529/Unknown  240s 453ms/step - loss: 1.1192 - sparse_categorical_accuracy: 0.5787


530/Unknown  241s 453ms/step - loss: 1.1187 - sparse_categorical_accuracy: 0.5788


531/Unknown  241s 453ms/step - loss: 1.1182 - sparse_categorical_accuracy: 0.5790


532/Unknown  242s 453ms/step - loss: 1.1176 - sparse_categorical_accuracy: 0.5792


533/Unknown  242s 453ms/step - loss: 1.1171 - sparse_categorical_accuracy: 0.5793


534/Unknown  243s 453ms/step - loss: 1.1166 - sparse_categorical_accuracy: 0.5795


535/Unknown  243s 453ms/step - loss: 1.1161 - sparse_categorical_accuracy: 0.5797


536/Unknown  244s 453ms/step - loss: 1.1155 - sparse_categorical_accuracy: 0.5798


537/Unknown  244s 453ms/step - loss: 1.1150 - sparse_categorical_accuracy: 0.5800


538/Unknown  245s 454ms/step - loss: 1.1145 - sparse_categorical_accuracy: 0.5802


539/Unknown  245s 454ms/step - loss: 1.1140 - sparse_categorical_accuracy: 0.5803


540/Unknown  245s 454ms/step - loss: 1.1135 - sparse_categorical_accuracy: 0.5805


541/Unknown  246s 454ms/step - loss: 1.1129 - sparse_categorical_accuracy: 0.5807


542/Unknown  246s 454ms/step - loss: 1.1124 - sparse_categorical_accuracy: 0.5808


543/Unknown  247s 454ms/step - loss: 1.1119 - sparse_categorical_accuracy: 0.5810


544/Unknown  247s 454ms/step - loss: 1.1114 - sparse_categorical_accuracy: 0.5811


545/Unknown  248s 454ms/step - loss: 1.1109 - sparse_categorical_accuracy: 0.5813


546/Unknown  248s 454ms/step - loss: 1.1104 - sparse_categorical_accuracy: 0.5815


547/Unknown  249s 454ms/step - loss: 1.1099 - sparse_categorical_accuracy: 0.5816


548/Unknown  249s 454ms/step - loss: 1.1093 - sparse_categorical_accuracy: 0.5818


549/Unknown  250s 454ms/step - loss: 1.1088 - sparse_categorical_accuracy: 0.5820


550/Unknown  250s 454ms/step - loss: 1.1083 - sparse_categorical_accuracy: 0.5821


551/Unknown  251s 454ms/step - loss: 1.1078 - sparse_categorical_accuracy: 0.5823


552/Unknown  251s 454ms/step - loss: 1.1073 - sparse_categorical_accuracy: 0.5824


553/Unknown  252s 454ms/step - loss: 1.1068 - sparse_categorical_accuracy: 0.5826


554/Unknown  252s 454ms/step - loss: 1.1063 - sparse_categorical_accuracy: 0.5828


555/Unknown  253s 454ms/step - loss: 1.1058 - sparse_categorical_accuracy: 0.5829


556/Unknown  253s 454ms/step - loss: 1.1053 - sparse_categorical_accuracy: 0.5831


557/Unknown  254s 454ms/step - loss: 1.1048 - sparse_categorical_accuracy: 0.5832


558/Unknown  254s 455ms/step - loss: 1.1043 - sparse_categorical_accuracy: 0.5834


559/Unknown  255s 455ms/step - loss: 1.1038 - sparse_categorical_accuracy: 0.5835


560/Unknown  255s 455ms/step - loss: 1.1033 - sparse_categorical_accuracy: 0.5837


561/Unknown  256s 455ms/step - loss: 1.1029 - sparse_categorical_accuracy: 0.5839


562/Unknown  256s 455ms/step - loss: 1.1024 - sparse_categorical_accuracy: 0.5840


563/Unknown  257s 455ms/step - loss: 1.1019 - sparse_categorical_accuracy: 0.5842


564/Unknown  257s 455ms/step - loss: 1.1014 - sparse_categorical_accuracy: 0.5843


565/Unknown  257s 455ms/step - loss: 1.1009 - sparse_categorical_accuracy: 0.5845


566/Unknown  258s 455ms/step - loss: 1.1004 - sparse_categorical_accuracy: 0.5846


567/Unknown  258s 455ms/step - loss: 1.0999 - sparse_categorical_accuracy: 0.5848


568/Unknown  259s 455ms/step - loss: 1.0994 - sparse_categorical_accuracy: 0.5849


569/Unknown  259s 455ms/step - loss: 1.0990 - sparse_categorical_accuracy: 0.5851


570/Unknown  260s 455ms/step - loss: 1.0985 - sparse_categorical_accuracy: 0.5852


571/Unknown  260s 455ms/step - loss: 1.0980 - sparse_categorical_accuracy: 0.5854


572/Unknown  261s 455ms/step - loss: 1.0975 - sparse_categorical_accuracy: 0.5855


573/Unknown  261s 455ms/step - loss: 1.0970 - sparse_categorical_accuracy: 0.5857


574/Unknown  262s 455ms/step - loss: 1.0966 - sparse_categorical_accuracy: 0.5859


575/Unknown  262s 455ms/step - loss: 1.0961 - sparse_categorical_accuracy: 0.5860


576/Unknown  263s 455ms/step - loss: 1.0956 - sparse_categorical_accuracy: 0.5862


577/Unknown  263s 455ms/step - loss: 1.0951 - sparse_categorical_accuracy: 0.5863


578/Unknown  264s 455ms/step - loss: 1.0947 - sparse_categorical_accuracy: 0.5865


579/Unknown  264s 455ms/step - loss: 1.0942 - sparse_categorical_accuracy: 0.5866


580/Unknown  265s 456ms/step - loss: 1.0937 - sparse_categorical_accuracy: 0.5868


581/Unknown  265s 456ms/step - loss: 1.0933 - sparse_categorical_accuracy: 0.5869


582/Unknown  266s 456ms/step - loss: 1.0928 - sparse_categorical_accuracy: 0.5870


583/Unknown  266s 456ms/step - loss: 1.0923 - sparse_categorical_accuracy: 0.5872


584/Unknown  267s 456ms/step - loss: 1.0919 - sparse_categorical_accuracy: 0.5873


585/Unknown  267s 456ms/step - loss: 1.0914 - sparse_categorical_accuracy: 0.5875


586/Unknown  268s 456ms/step - loss: 1.0909 - sparse_categorical_accuracy: 0.5876


587/Unknown  268s 456ms/step - loss: 1.0905 - sparse_categorical_accuracy: 0.5878


588/Unknown  269s 456ms/step - loss: 1.0900 - sparse_categorical_accuracy: 0.5879


589/Unknown  269s 456ms/step - loss: 1.0896 - sparse_categorical_accuracy: 0.5881


590/Unknown  270s 456ms/step - loss: 1.0891 - sparse_categorical_accuracy: 0.5882


591/Unknown  270s 456ms/step - loss: 1.0886 - sparse_categorical_accuracy: 0.5884


592/Unknown  271s 456ms/step - loss: 1.0882 - sparse_categorical_accuracy: 0.5885


593/Unknown  271s 456ms/step - loss: 1.0877 - sparse_categorical_accuracy: 0.5887


594/Unknown  271s 456ms/step - loss: 1.0873 - sparse_categorical_accuracy: 0.5888


595/Unknown  272s 456ms/step - loss: 1.0868 - sparse_categorical_accuracy: 0.5889


596/Unknown  272s 456ms/step - loss: 1.0864 - sparse_categorical_accuracy: 0.5891


597/Unknown  273s 456ms/step - loss: 1.0859 - sparse_categorical_accuracy: 0.5892


598/Unknown  273s 456ms/step - loss: 1.0855 - sparse_categorical_accuracy: 0.5894


599/Unknown  274s 456ms/step - loss: 1.0850 - sparse_categorical_accuracy: 0.5895


600/Unknown  274s 456ms/step - loss: 1.0846 - sparse_categorical_accuracy: 0.5897


601/Unknown  275s 456ms/step - loss: 1.0841 - sparse_categorical_accuracy: 0.5898


602/Unknown  275s 456ms/step - loss: 1.0837 - sparse_categorical_accuracy: 0.5899


603/Unknown  276s 456ms/step - loss: 1.0832 - sparse_categorical_accuracy: 0.5901


604/Unknown  276s 456ms/step - loss: 1.0828 - sparse_categorical_accuracy: 0.5902


605/Unknown  277s 456ms/step - loss: 1.0824 - sparse_categorical_accuracy: 0.5904


606/Unknown  277s 457ms/step - loss: 1.0819 - sparse_categorical_accuracy: 0.5905


607/Unknown  278s 457ms/step - loss: 1.0815 - sparse_categorical_accuracy: 0.5906


608/Unknown  278s 457ms/step - loss: 1.0810 - sparse_categorical_accuracy: 0.5908


609/Unknown  279s 457ms/step - loss: 1.0806 - sparse_categorical_accuracy: 0.5909


610/Unknown  279s 457ms/step - loss: 1.0802 - sparse_categorical_accuracy: 0.5911


611/Unknown  280s 457ms/step - loss: 1.0797 - sparse_categorical_accuracy: 0.5912


612/Unknown  280s 457ms/step - loss: 1.0793 - sparse_categorical_accuracy: 0.5913


613/Unknown  280s 457ms/step - loss: 1.0789 - sparse_categorical_accuracy: 0.5915


614/Unknown  282s 458ms/step - loss: 1.0784 - sparse_categorical_accuracy: 0.5916


615/Unknown  282s 458ms/step - loss: 1.0780 - sparse_categorical_accuracy: 0.5917


616/Unknown  283s 458ms/step - loss: 1.0776 - sparse_categorical_accuracy: 0.5919


617/Unknown  283s 458ms/step - loss: 1.0771 - sparse_categorical_accuracy: 0.5920


618/Unknown  284s 458ms/step - loss: 1.0767 - sparse_categorical_accuracy: 0.5921


619/Unknown  284s 458ms/step - loss: 1.0763 - sparse_categorical_accuracy: 0.5923


620/Unknown  285s 459ms/step - loss: 1.0759 - sparse_categorical_accuracy: 0.5924


621/Unknown  285s 459ms/step - loss: 1.0754 - sparse_categorical_accuracy: 0.5926


622/Unknown  286s 459ms/step - loss: 1.0750 - sparse_categorical_accuracy: 0.5927


623/Unknown  286s 459ms/step - loss: 1.0746 - sparse_categorical_accuracy: 0.5928


624/Unknown  287s 459ms/step - loss: 1.0742 - sparse_categorical_accuracy: 0.5930


625/Unknown  287s 459ms/step - loss: 1.0737 - sparse_categorical_accuracy: 0.5931


626/Unknown  288s 459ms/step - loss: 1.0733 - sparse_categorical_accuracy: 0.5932


627/Unknown  288s 459ms/step - loss: 1.0729 - sparse_categorical_accuracy: 0.5934


628/Unknown  289s 459ms/step - loss: 1.0725 - sparse_categorical_accuracy: 0.5935


629/Unknown  289s 459ms/step - loss: 1.0721 - sparse_categorical_accuracy: 0.5936


630/Unknown  290s 459ms/step - loss: 1.0716 - sparse_categorical_accuracy: 0.5937


631/Unknown  290s 459ms/step - loss: 1.0712 - sparse_categorical_accuracy: 0.5939


632/Unknown  291s 459ms/step - loss: 1.0708 - sparse_categorical_accuracy: 0.5940


633/Unknown  291s 459ms/step - loss: 1.0704 - sparse_categorical_accuracy: 0.5941


634/Unknown  292s 459ms/step - loss: 1.0700 - sparse_categorical_accuracy: 0.5943


635/Unknown  292s 459ms/step - loss: 1.0696 - sparse_categorical_accuracy: 0.5944


636/Unknown  293s 459ms/step - loss: 1.0692 - sparse_categorical_accuracy: 0.5945


637/Unknown  293s 459ms/step - loss: 1.0688 - sparse_categorical_accuracy: 0.5947


638/Unknown  294s 459ms/step - loss: 1.0683 - sparse_categorical_accuracy: 0.5948


639/Unknown  294s 459ms/step - loss: 1.0679 - sparse_categorical_accuracy: 0.5949


640/Unknown  295s 459ms/step - loss: 1.0675 - sparse_categorical_accuracy: 0.5950


641/Unknown  295s 459ms/step - loss: 1.0671 - sparse_categorical_accuracy: 0.5952


642/Unknown  296s 460ms/step - loss: 1.0667 - sparse_categorical_accuracy: 0.5953


643/Unknown  296s 460ms/step - loss: 1.0663 - sparse_categorical_accuracy: 0.5954


644/Unknown  297s 460ms/step - loss: 1.0659 - sparse_categorical_accuracy: 0.5956


645/Unknown  297s 460ms/step - loss: 1.0655 - sparse_categorical_accuracy: 0.5957


646/Unknown  297s 460ms/step - loss: 1.0651 - sparse_categorical_accuracy: 0.5958


647/Unknown  298s 460ms/step - loss: 1.0647 - sparse_categorical_accuracy: 0.5959


648/Unknown  299s 460ms/step - loss: 1.0643 - sparse_categorical_accuracy: 0.5961


649/Unknown  299s 460ms/step - loss: 1.0639 - sparse_categorical_accuracy: 0.5962


650/Unknown  299s 460ms/step - loss: 1.0635 - sparse_categorical_accuracy: 0.5963


651/Unknown  300s 460ms/step - loss: 1.0631 - sparse_categorical_accuracy: 0.5964


652/Unknown  300s 460ms/step - loss: 1.0627 - sparse_categorical_accuracy: 0.5966


653/Unknown  301s 460ms/step - loss: 1.0623 - sparse_categorical_accuracy: 0.5967


654/Unknown  301s 460ms/step - loss: 1.0619 - sparse_categorical_accuracy: 0.5968


655/Unknown  302s 460ms/step - loss: 1.0615 - sparse_categorical_accuracy: 0.5969


656/Unknown  302s 460ms/step - loss: 1.0611 - sparse_categorical_accuracy: 0.5971


657/Unknown  303s 460ms/step - loss: 1.0608 - sparse_categorical_accuracy: 0.5972


658/Unknown  303s 460ms/step - loss: 1.0604 - sparse_categorical_accuracy: 0.5973


659/Unknown  304s 460ms/step - loss: 1.0600 - sparse_categorical_accuracy: 0.5974


660/Unknown  304s 460ms/step - loss: 1.0596 - sparse_categorical_accuracy: 0.5976


661/Unknown  305s 460ms/step - loss: 1.0592 - sparse_categorical_accuracy: 0.5977


662/Unknown  305s 460ms/step - loss: 1.0588 - sparse_categorical_accuracy: 0.5978


663/Unknown  306s 460ms/step - loss: 1.0584 - sparse_categorical_accuracy: 0.5979


664/Unknown  306s 460ms/step - loss: 1.0580 - sparse_categorical_accuracy: 0.5980


665/Unknown  306s 460ms/step - loss: 1.0577 - sparse_categorical_accuracy: 0.5982


666/Unknown  307s 460ms/step - loss: 1.0573 - sparse_categorical_accuracy: 0.5983


667/Unknown  307s 460ms/step - loss: 1.0569 - sparse_categorical_accuracy: 0.5984


668/Unknown  308s 460ms/step - loss: 1.0565 - sparse_categorical_accuracy: 0.5985


669/Unknown  308s 460ms/step - loss: 1.0561 - sparse_categorical_accuracy: 0.5986


670/Unknown  309s 460ms/step - loss: 1.0557 - sparse_categorical_accuracy: 0.5988


671/Unknown  309s 460ms/step - loss: 1.0554 - sparse_categorical_accuracy: 0.5989


672/Unknown  310s 460ms/step - loss: 1.0550 - sparse_categorical_accuracy: 0.5990


673/Unknown  310s 460ms/step - loss: 1.0546 - sparse_categorical_accuracy: 0.5991


674/Unknown  310s 460ms/step - loss: 1.0542 - sparse_categorical_accuracy: 0.5992


675/Unknown  311s 460ms/step - loss: 1.0539 - sparse_categorical_accuracy: 0.5994


676/Unknown  311s 460ms/step - loss: 1.0535 - sparse_categorical_accuracy: 0.5995


677/Unknown  312s 460ms/step - loss: 1.0531 - sparse_categorical_accuracy: 0.5996


678/Unknown  312s 460ms/step - loss: 1.0527 - sparse_categorical_accuracy: 0.5997


679/Unknown  313s 460ms/step - loss: 1.0524 - sparse_categorical_accuracy: 0.5998


680/Unknown  313s 460ms/step - loss: 1.0520 - sparse_categorical_accuracy: 0.6000


681/Unknown  313s 459ms/step - loss: 1.0516 - sparse_categorical_accuracy: 0.6001


682/Unknown  314s 459ms/step - loss: 1.0512 - sparse_categorical_accuracy: 0.6002


683/Unknown  314s 459ms/step - loss: 1.0509 - sparse_categorical_accuracy: 0.6003


684/Unknown  315s 459ms/step - loss: 1.0505 - sparse_categorical_accuracy: 0.6004


685/Unknown  315s 459ms/step - loss: 1.0501 - sparse_categorical_accuracy: 0.6005


686/Unknown  315s 459ms/step - loss: 1.0498 - sparse_categorical_accuracy: 0.6006


687/Unknown  316s 459ms/step - loss: 1.0494 - sparse_categorical_accuracy: 0.6008


688/Unknown  316s 459ms/step - loss: 1.0490 - sparse_categorical_accuracy: 0.6009


689/Unknown  317s 459ms/step - loss: 1.0487 - sparse_categorical_accuracy: 0.6010


690/Unknown  317s 459ms/step - loss: 1.0483 - sparse_categorical_accuracy: 0.6011


691/Unknown  318s 459ms/step - loss: 1.0479 - sparse_categorical_accuracy: 0.6012


692/Unknown  318s 459ms/step - loss: 1.0476 - sparse_categorical_accuracy: 0.6013


693/Unknown  319s 459ms/step - loss: 1.0472 - sparse_categorical_accuracy: 0.6015


694/Unknown  319s 459ms/step - loss: 1.0468 - sparse_categorical_accuracy: 0.6016


695/Unknown  320s 459ms/step - loss: 1.0465 - sparse_categorical_accuracy: 0.6017


696/Unknown  320s 459ms/step - loss: 1.0461 - sparse_categorical_accuracy: 0.6018


697/Unknown  320s 459ms/step - loss: 1.0458 - sparse_categorical_accuracy: 0.6019


698/Unknown  321s 459ms/step - loss: 1.0454 - sparse_categorical_accuracy: 0.6020


699/Unknown  321s 459ms/step - loss: 1.0450 - sparse_categorical_accuracy: 0.6021


700/Unknown  322s 459ms/step - loss: 1.0447 - sparse_categorical_accuracy: 0.6022


701/Unknown  322s 459ms/step - loss: 1.0443 - sparse_categorical_accuracy: 0.6024


702/Unknown  323s 459ms/step - loss: 1.0440 - sparse_categorical_accuracy: 0.6025


703/Unknown  323s 459ms/step - loss: 1.0436 - sparse_categorical_accuracy: 0.6026


704/Unknown  324s 459ms/step - loss: 1.0433 - sparse_categorical_accuracy: 0.6027


705/Unknown  324s 459ms/step - loss: 1.0429 - sparse_categorical_accuracy: 0.6028


706/Unknown  325s 459ms/step - loss: 1.0426 - sparse_categorical_accuracy: 0.6029


707/Unknown  325s 459ms/step - loss: 1.0422 - sparse_categorical_accuracy: 0.6030


708/Unknown  326s 459ms/step - loss: 1.0419 - sparse_categorical_accuracy: 0.6031


709/Unknown  326s 459ms/step - loss: 1.0415 - sparse_categorical_accuracy: 0.6032


710/Unknown  327s 459ms/step - loss: 1.0411 - sparse_categorical_accuracy: 0.6034


711/Unknown  327s 459ms/step - loss: 1.0408 - sparse_categorical_accuracy: 0.6035


712/Unknown  328s 459ms/step - loss: 1.0405 - sparse_categorical_accuracy: 0.6036


713/Unknown  328s 459ms/step - loss: 1.0401 - sparse_categorical_accuracy: 0.6037


714/Unknown  329s 459ms/step - loss: 1.0398 - sparse_categorical_accuracy: 0.6038


715/Unknown  329s 460ms/step - loss: 1.0394 - sparse_categorical_accuracy: 0.6039


716/Unknown  330s 460ms/step - loss: 1.0391 - sparse_categorical_accuracy: 0.6040


717/Unknown  330s 460ms/step - loss: 1.0387 - sparse_categorical_accuracy: 0.6041


718/Unknown  330s 460ms/step - loss: 1.0384 - sparse_categorical_accuracy: 0.6042


719/Unknown  331s 460ms/step - loss: 1.0380 - sparse_categorical_accuracy: 0.6043


720/Unknown  331s 460ms/step - loss: 1.0377 - sparse_categorical_accuracy: 0.6044


721/Unknown  332s 460ms/step - loss: 1.0373 - sparse_categorical_accuracy: 0.6046


722/Unknown  332s 460ms/step - loss: 1.0370 - sparse_categorical_accuracy: 0.6047


723/Unknown  333s 459ms/step - loss: 1.0367 - sparse_categorical_accuracy: 0.6048


724/Unknown  333s 459ms/step - loss: 1.0363 - sparse_categorical_accuracy: 0.6049


725/Unknown  333s 459ms/step - loss: 1.0360 - sparse_categorical_accuracy: 0.6050


726/Unknown  334s 459ms/step - loss: 1.0356 - sparse_categorical_accuracy: 0.6051


727/Unknown  334s 459ms/step - loss: 1.0353 - sparse_categorical_accuracy: 0.6052


728/Unknown  335s 459ms/step - loss: 1.0350 - sparse_categorical_accuracy: 0.6053


729/Unknown  335s 459ms/step - loss: 1.0346 - sparse_categorical_accuracy: 0.6054


730/Unknown  336s 459ms/step - loss: 1.0343 - sparse_categorical_accuracy: 0.6055


731/Unknown  336s 459ms/step - loss: 1.0340 - sparse_categorical_accuracy: 0.6056


732/Unknown  336s 459ms/step - loss: 1.0336 - sparse_categorical_accuracy: 0.6057


733/Unknown  337s 459ms/step - loss: 1.0333 - sparse_categorical_accuracy: 0.6058


734/Unknown  337s 459ms/step - loss: 1.0330 - sparse_categorical_accuracy: 0.6059


735/Unknown  338s 459ms/step - loss: 1.0326 - sparse_categorical_accuracy: 0.6060


736/Unknown  338s 459ms/step - loss: 1.0323 - sparse_categorical_accuracy: 0.6061


737/Unknown  339s 459ms/step - loss: 1.0320 - sparse_categorical_accuracy: 0.6062


738/Unknown  339s 459ms/step - loss: 1.0316 - sparse_categorical_accuracy: 0.6064


739/Unknown  340s 459ms/step - loss: 1.0313 - sparse_categorical_accuracy: 0.6065


740/Unknown  340s 459ms/step - loss: 1.0310 - sparse_categorical_accuracy: 0.6066


741/Unknown  340s 459ms/step - loss: 1.0306 - sparse_categorical_accuracy: 0.6067


742/Unknown  341s 459ms/step - loss: 1.0303 - sparse_categorical_accuracy: 0.6068


743/Unknown  341s 459ms/step - loss: 1.0300 - sparse_categorical_accuracy: 0.6069


744/Unknown  342s 459ms/step - loss: 1.0296 - sparse_categorical_accuracy: 0.6070


745/Unknown  342s 459ms/step - loss: 1.0293 - sparse_categorical_accuracy: 0.6071


746/Unknown  343s 459ms/step - loss: 1.0290 - sparse_categorical_accuracy: 0.6072


747/Unknown  343s 459ms/step - loss: 1.0287 - sparse_categorical_accuracy: 0.6073


748/Unknown  344s 459ms/step - loss: 1.0283 - sparse_categorical_accuracy: 0.6074


749/Unknown  344s 459ms/step - loss: 1.0280 - sparse_categorical_accuracy: 0.6075


750/Unknown  345s 459ms/step - loss: 1.0277 - sparse_categorical_accuracy: 0.6076


751/Unknown  345s 459ms/step - loss: 1.0274 - sparse_categorical_accuracy: 0.6077


752/Unknown  346s 459ms/step - loss: 1.0271 - sparse_categorical_accuracy: 0.6078


753/Unknown  346s 459ms/step - loss: 1.0267 - sparse_categorical_accuracy: 0.6079


754/Unknown  347s 459ms/step - loss: 1.0264 - sparse_categorical_accuracy: 0.6080


755/Unknown  347s 459ms/step - loss: 1.0261 - sparse_categorical_accuracy: 0.6081


756/Unknown  348s 459ms/step - loss: 1.0258 - sparse_categorical_accuracy: 0.6082


757/Unknown  348s 459ms/step - loss: 1.0255 - sparse_categorical_accuracy: 0.6083


758/Unknown  349s 459ms/step - loss: 1.0251 - sparse_categorical_accuracy: 0.6084


759/Unknown  349s 459ms/step - loss: 1.0248 - sparse_categorical_accuracy: 0.6085


760/Unknown  350s 459ms/step - loss: 1.0245 - sparse_categorical_accuracy: 0.6086


761/Unknown  350s 459ms/step - loss: 1.0242 - sparse_categorical_accuracy: 0.6087


762/Unknown  351s 459ms/step - loss: 1.0239 - sparse_categorical_accuracy: 0.6088


763/Unknown  351s 459ms/step - loss: 1.0236 - sparse_categorical_accuracy: 0.6089


764/Unknown  352s 459ms/step - loss: 1.0232 - sparse_categorical_accuracy: 0.6090


765/Unknown  352s 460ms/step - loss: 1.0229 - sparse_categorical_accuracy: 0.6091


766/Unknown  353s 460ms/step - loss: 1.0226 - sparse_categorical_accuracy: 0.6092


767/Unknown  353s 460ms/step - loss: 1.0223 - sparse_categorical_accuracy: 0.6093


768/Unknown  354s 460ms/step - loss: 1.0220 - sparse_categorical_accuracy: 0.6094


769/Unknown  354s 460ms/step - loss: 1.0217 - sparse_categorical_accuracy: 0.6095


770/Unknown  354s 460ms/step - loss: 1.0214 - sparse_categorical_accuracy: 0.6096


771/Unknown  355s 459ms/step - loss: 1.0211 - sparse_categorical_accuracy: 0.6097


772/Unknown  355s 459ms/step - loss: 1.0207 - sparse_categorical_accuracy: 0.6098


773/Unknown  356s 459ms/step - loss: 1.0204 - sparse_categorical_accuracy: 0.6099


774/Unknown  356s 459ms/step - loss: 1.0201 - sparse_categorical_accuracy: 0.6100


775/Unknown  357s 459ms/step - loss: 1.0198 - sparse_categorical_accuracy: 0.6101


776/Unknown  357s 459ms/step - loss: 1.0195 - sparse_categorical_accuracy: 0.6102


777/Unknown  358s 460ms/step - loss: 1.0192 - sparse_categorical_accuracy: 0.6103


778/Unknown  358s 460ms/step - loss: 1.0189 - sparse_categorical_accuracy: 0.6103


779/Unknown  359s 460ms/step - loss: 1.0186 - sparse_categorical_accuracy: 0.6104


780/Unknown  359s 460ms/step - loss: 1.0183 - sparse_categorical_accuracy: 0.6105


781/Unknown  360s 460ms/step - loss: 1.0180 - sparse_categorical_accuracy: 0.6106


782/Unknown  360s 460ms/step - loss: 1.0177 - sparse_categorical_accuracy: 0.6107


783/Unknown  360s 460ms/step - loss: 1.0174 - sparse_categorical_accuracy: 0.6108


784/Unknown  361s 460ms/step - loss: 1.0171 - sparse_categorical_accuracy: 0.6109


785/Unknown  361s 460ms/step - loss: 1.0168 - sparse_categorical_accuracy: 0.6110


786/Unknown  362s 460ms/step - loss: 1.0165 - sparse_categorical_accuracy: 0.6111


787/Unknown  362s 460ms/step - loss: 1.0162 - sparse_categorical_accuracy: 0.6112


788/Unknown  363s 460ms/step - loss: 1.0159 - sparse_categorical_accuracy: 0.6113


789/Unknown  363s 460ms/step - loss: 1.0156 - sparse_categorical_accuracy: 0.6114


790/Unknown  364s 460ms/step - loss: 1.0153 - sparse_categorical_accuracy: 0.6115


791/Unknown  364s 460ms/step - loss: 1.0150 - sparse_categorical_accuracy: 0.6116


792/Unknown  365s 460ms/step - loss: 1.0147 - sparse_categorical_accuracy: 0.6117


793/Unknown  365s 460ms/step - loss: 1.0144 - sparse_categorical_accuracy: 0.6118


794/Unknown  366s 460ms/step - loss: 1.0141 - sparse_categorical_accuracy: 0.6119


795/Unknown  366s 460ms/step - loss: 1.0138 - sparse_categorical_accuracy: 0.6120


796/Unknown  367s 460ms/step - loss: 1.0135 - sparse_categorical_accuracy: 0.6120


797/Unknown  367s 460ms/step - loss: 1.0132 - sparse_categorical_accuracy: 0.6121


798/Unknown  367s 460ms/step - loss: 1.0129 - sparse_categorical_accuracy: 0.6122


799/Unknown  368s 460ms/step - loss: 1.0126 - sparse_categorical_accuracy: 0.6123


800/Unknown  368s 460ms/step - loss: 1.0123 - sparse_categorical_accuracy: 0.6124


801/Unknown  369s 460ms/step - loss: 1.0120 - sparse_categorical_accuracy: 0.6125


802/Unknown  369s 460ms/step - loss: 1.0117 - sparse_categorical_accuracy: 0.6126


803/Unknown  370s 460ms/step - loss: 1.0114 - sparse_categorical_accuracy: 0.6127


804/Unknown  370s 460ms/step - loss: 1.0111 - sparse_categorical_accuracy: 0.6128


805/Unknown  371s 460ms/step - loss: 1.0108 - sparse_categorical_accuracy: 0.6129


806/Unknown  371s 460ms/step - loss: 1.0106 - sparse_categorical_accuracy: 0.6130


807/Unknown  372s 460ms/step - loss: 1.0103 - sparse_categorical_accuracy: 0.6131


808/Unknown  372s 460ms/step - loss: 1.0100 - sparse_categorical_accuracy: 0.6131


809/Unknown  372s 459ms/step - loss: 1.0097 - sparse_categorical_accuracy: 0.6132


810/Unknown  373s 459ms/step - loss: 1.0094 - sparse_categorical_accuracy: 0.6133


811/Unknown  373s 459ms/step - loss: 1.0091 - sparse_categorical_accuracy: 0.6134


812/Unknown  373s 459ms/step - loss: 1.0088 - sparse_categorical_accuracy: 0.6135


813/Unknown  374s 459ms/step - loss: 1.0085 - sparse_categorical_accuracy: 0.6136


814/Unknown  374s 459ms/step - loss: 1.0082 - sparse_categorical_accuracy: 0.6137


815/Unknown  375s 459ms/step - loss: 1.0080 - sparse_categorical_accuracy: 0.6138


816/Unknown  375s 459ms/step - loss: 1.0077 - sparse_categorical_accuracy: 0.6139


817/Unknown  375s 459ms/step - loss: 1.0074 - sparse_categorical_accuracy: 0.6140


818/Unknown  376s 459ms/step - loss: 1.0071 - sparse_categorical_accuracy: 0.6140


819/Unknown  376s 459ms/step - loss: 1.0068 - sparse_categorical_accuracy: 0.6141


820/Unknown  377s 459ms/step - loss: 1.0065 - sparse_categorical_accuracy: 0.6142


821/Unknown  377s 459ms/step - loss: 1.0063 - sparse_categorical_accuracy: 0.6143


822/Unknown  378s 459ms/step - loss: 1.0060 - sparse_categorical_accuracy: 0.6144


823/Unknown  378s 459ms/step - loss: 1.0057 - sparse_categorical_accuracy: 0.6145


824/Unknown  379s 459ms/step - loss: 1.0054 - sparse_categorical_accuracy: 0.6146


825/Unknown  379s 459ms/step - loss: 1.0051 - sparse_categorical_accuracy: 0.6147


826/Unknown  380s 459ms/step - loss: 1.0048 - sparse_categorical_accuracy: 0.6148


827/Unknown  380s 459ms/step - loss: 1.0046 - sparse_categorical_accuracy: 0.6148


828/Unknown  381s 459ms/step - loss: 1.0043 - sparse_categorical_accuracy: 0.6149


829/Unknown  381s 459ms/step - loss: 1.0040 - sparse_categorical_accuracy: 0.6150


830/Unknown  382s 459ms/step - loss: 1.0037 - sparse_categorical_accuracy: 0.6151


831/Unknown  382s 459ms/step - loss: 1.0034 - sparse_categorical_accuracy: 0.6152


832/Unknown  383s 459ms/step - loss: 1.0032 - sparse_categorical_accuracy: 0.6153


833/Unknown  383s 459ms/step - loss: 1.0029 - sparse_categorical_accuracy: 0.6154


834/Unknown  384s 459ms/step - loss: 1.0026 - sparse_categorical_accuracy: 0.6155


835/Unknown  384s 459ms/step - loss: 1.0023 - sparse_categorical_accuracy: 0.6155


836/Unknown  385s 459ms/step - loss: 1.0021 - sparse_categorical_accuracy: 0.6156


837/Unknown  385s 459ms/step - loss: 1.0018 - sparse_categorical_accuracy: 0.6157


838/Unknown  385s 459ms/step - loss: 1.0015 - sparse_categorical_accuracy: 0.6158


839/Unknown  386s 459ms/step - loss: 1.0012 - sparse_categorical_accuracy: 0.6159


840/Unknown  386s 459ms/step - loss: 1.0010 - sparse_categorical_accuracy: 0.6160


841/Unknown  387s 459ms/step - loss: 1.0007 - sparse_categorical_accuracy: 0.6161


842/Unknown  387s 459ms/step - loss: 1.0004 - sparse_categorical_accuracy: 0.6162


843/Unknown  388s 459ms/step - loss: 1.0001 - sparse_categorical_accuracy: 0.6162


844/Unknown  388s 459ms/step - loss: 0.9999 - sparse_categorical_accuracy: 0.6163


845/Unknown  389s 459ms/step - loss: 0.9996 - sparse_categorical_accuracy: 0.6164


846/Unknown  389s 459ms/step - loss: 0.9993 - sparse_categorical_accuracy: 0.6165


847/Unknown  390s 459ms/step - loss: 0.9990 - sparse_categorical_accuracy: 0.6166


848/Unknown  390s 460ms/step - loss: 0.9988 - sparse_categorical_accuracy: 0.6167


849/Unknown  391s 460ms/step - loss: 0.9985 - sparse_categorical_accuracy: 0.6167


850/Unknown  391s 460ms/step - loss: 0.9982 - sparse_categorical_accuracy: 0.6168


851/Unknown  392s 460ms/step - loss: 0.9980 - sparse_categorical_accuracy: 0.6169


852/Unknown  392s 460ms/step - loss: 0.9977 - sparse_categorical_accuracy: 0.6170


853/Unknown  393s 460ms/step - loss: 0.9974 - sparse_categorical_accuracy: 0.6171


854/Unknown  393s 460ms/step - loss: 0.9972 - sparse_categorical_accuracy: 0.6172


855/Unknown  394s 460ms/step - loss: 0.9969 - sparse_categorical_accuracy: 0.6173


856/Unknown  394s 460ms/step - loss: 0.9966 - sparse_categorical_accuracy: 0.6173


857/Unknown  394s 460ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6174


858/Unknown  395s 460ms/step - loss: 0.9961 - sparse_categorical_accuracy: 0.6175


859/Unknown  395s 460ms/step - loss: 0.9958 - sparse_categorical_accuracy: 0.6176


860/Unknown  396s 460ms/step - loss: 0.9956 - sparse_categorical_accuracy: 0.6177


861/Unknown  396s 460ms/step - loss: 0.9953 - sparse_categorical_accuracy: 0.6178


862/Unknown  397s 460ms/step - loss: 0.9950 - sparse_categorical_accuracy: 0.6178


863/Unknown  397s 459ms/step - loss: 0.9948 - sparse_categorical_accuracy: 0.6179


864/Unknown  397s 459ms/step - loss: 0.9945 - sparse_categorical_accuracy: 0.6180


865/Unknown  398s 459ms/step - loss: 0.9942 - sparse_categorical_accuracy: 0.6181


866/Unknown  398s 459ms/step - loss: 0.9940 - sparse_categorical_accuracy: 0.6182


867/Unknown  399s 459ms/step - loss: 0.9937 - sparse_categorical_accuracy: 0.6182


868/Unknown  399s 459ms/step - loss: 0.9935 - sparse_categorical_accuracy: 0.6183


869/Unknown  399s 459ms/step - loss: 0.9932 - sparse_categorical_accuracy: 0.6184


870/Unknown  400s 459ms/step - loss: 0.9929 - sparse_categorical_accuracy: 0.6185


871/Unknown  400s 459ms/step - loss: 0.9927 - sparse_categorical_accuracy: 0.6186


872/Unknown  401s 459ms/step - loss: 0.9924 - sparse_categorical_accuracy: 0.6187


873/Unknown  401s 459ms/step - loss: 0.9922 - sparse_categorical_accuracy: 0.6187


874/Unknown  402s 459ms/step - loss: 0.9919 - sparse_categorical_accuracy: 0.6188


875/Unknown  402s 459ms/step - loss: 0.9916 - sparse_categorical_accuracy: 0.6189


876/Unknown  403s 459ms/step - loss: 0.9914 - sparse_categorical_accuracy: 0.6190


877/Unknown  403s 459ms/step - loss: 0.9911 - sparse_categorical_accuracy: 0.6191


878/Unknown  404s 459ms/step - loss: 0.9909 - sparse_categorical_accuracy: 0.6191


879/Unknown  404s 459ms/step - loss: 0.9906 - sparse_categorical_accuracy: 0.6192


880/Unknown  404s 459ms/step - loss: 0.9904 - sparse_categorical_accuracy: 0.6193


881/Unknown  405s 459ms/step - loss: 0.9901 - sparse_categorical_accuracy: 0.6194


882/Unknown  405s 459ms/step - loss: 0.9898 - sparse_categorical_accuracy: 0.6195


883/Unknown  406s 459ms/step - loss: 0.9896 - sparse_categorical_accuracy: 0.6195


884/Unknown  406s 459ms/step - loss: 0.9893 - sparse_categorical_accuracy: 0.6196


885/Unknown  406s 459ms/step - loss: 0.9891 - sparse_categorical_accuracy: 0.6197


886/Unknown  407s 459ms/step - loss: 0.9888 - sparse_categorical_accuracy: 0.6198


887/Unknown  407s 458ms/step - loss: 0.9886 - sparse_categorical_accuracy: 0.6199


888/Unknown  408s 458ms/step - loss: 0.9883 - sparse_categorical_accuracy: 0.6199


889/Unknown  408s 458ms/step - loss: 0.9881 - sparse_categorical_accuracy: 0.6200


890/Unknown  408s 458ms/step - loss: 0.9878 - sparse_categorical_accuracy: 0.6201


891/Unknown  409s 458ms/step - loss: 0.9876 - sparse_categorical_accuracy: 0.6202


892/Unknown  409s 458ms/step - loss: 0.9873 - sparse_categorical_accuracy: 0.6203


893/Unknown  410s 458ms/step - loss: 0.9871 - sparse_categorical_accuracy: 0.6203


894/Unknown  410s 458ms/step - loss: 0.9868 - sparse_categorical_accuracy: 0.6204


895/Unknown  411s 458ms/step - loss: 0.9866 - sparse_categorical_accuracy: 0.6205


896/Unknown  411s 458ms/step - loss: 0.9863 - sparse_categorical_accuracy: 0.6206


897/Unknown  412s 458ms/step - loss: 0.9861 - sparse_categorical_accuracy: 0.6206


898/Unknown  412s 458ms/step - loss: 0.9858 - sparse_categorical_accuracy: 0.6207


899/Unknown  413s 458ms/step - loss: 0.9856 - sparse_categorical_accuracy: 0.6208


900/Unknown  413s 459ms/step - loss: 0.9853 - sparse_categorical_accuracy: 0.6209


901/Unknown  414s 459ms/step - loss: 0.9851 - sparse_categorical_accuracy: 0.6210


902/Unknown  414s 458ms/step - loss: 0.9848 - sparse_categorical_accuracy: 0.6210


903/Unknown  414s 458ms/step - loss: 0.9846 - sparse_categorical_accuracy: 0.6211


904/Unknown  415s 458ms/step - loss: 0.9843 - sparse_categorical_accuracy: 0.6212


905/Unknown  415s 458ms/step - loss: 0.9841 - sparse_categorical_accuracy: 0.6213


906/Unknown  416s 458ms/step - loss: 0.9838 - sparse_categorical_accuracy: 0.6213


907/Unknown  416s 458ms/step - loss: 0.9836 - sparse_categorical_accuracy: 0.6214


908/Unknown  416s 458ms/step - loss: 0.9834 - sparse_categorical_accuracy: 0.6215


909/Unknown  417s 458ms/step - loss: 0.9831 - sparse_categorical_accuracy: 0.6216


910/Unknown  417s 458ms/step - loss: 0.9829 - sparse_categorical_accuracy: 0.6216


911/Unknown  418s 458ms/step - loss: 0.9826 - sparse_categorical_accuracy: 0.6217


912/Unknown  418s 458ms/step - loss: 0.9824 - sparse_categorical_accuracy: 0.6218


913/Unknown  418s 458ms/step - loss: 0.9821 - sparse_categorical_accuracy: 0.6219


914/Unknown  419s 458ms/step - loss: 0.9819 - sparse_categorical_accuracy: 0.6219


915/Unknown  419s 457ms/step - loss: 0.9817 - sparse_categorical_accuracy: 0.6220


916/Unknown  420s 457ms/step - loss: 0.9814 - sparse_categorical_accuracy: 0.6221


917/Unknown  420s 458ms/step - loss: 0.9812 - sparse_categorical_accuracy: 0.6222


918/Unknown  421s 458ms/step - loss: 0.9809 - sparse_categorical_accuracy: 0.6222


919/Unknown  421s 458ms/step - loss: 0.9807 - sparse_categorical_accuracy: 0.6223


920/Unknown  421s 457ms/step - loss: 0.9805 - sparse_categorical_accuracy: 0.6224


921/Unknown  422s 458ms/step - loss: 0.9802 - sparse_categorical_accuracy: 0.6225


922/Unknown  422s 458ms/step - loss: 0.9800 - sparse_categorical_accuracy: 0.6225


923/Unknown  423s 458ms/step - loss: 0.9797 - sparse_categorical_accuracy: 0.6226


924/Unknown  423s 458ms/step - loss: 0.9795 - sparse_categorical_accuracy: 0.6227


925/Unknown  424s 458ms/step - loss: 0.9793 - sparse_categorical_accuracy: 0.6228


926/Unknown  424s 458ms/step - loss: 0.9790 - sparse_categorical_accuracy: 0.6228


927/Unknown  425s 458ms/step - loss: 0.9788 - sparse_categorical_accuracy: 0.6229


928/Unknown  425s 458ms/step - loss: 0.9785 - sparse_categorical_accuracy: 0.6230


929/Unknown  426s 458ms/step - loss: 0.9783 - sparse_categorical_accuracy: 0.6231


930/Unknown  426s 458ms/step - loss: 0.9781 - sparse_categorical_accuracy: 0.6231


931/Unknown  427s 458ms/step - loss: 0.9778 - sparse_categorical_accuracy: 0.6232


932/Unknown  427s 458ms/step - loss: 0.9776 - sparse_categorical_accuracy: 0.6233


933/Unknown  428s 458ms/step - loss: 0.9774 - sparse_categorical_accuracy: 0.6234


934/Unknown  428s 458ms/step - loss: 0.9771 - sparse_categorical_accuracy: 0.6234


935/Unknown  429s 458ms/step - loss: 0.9769 - sparse_categorical_accuracy: 0.6235


936/Unknown  429s 458ms/step - loss: 0.9767 - sparse_categorical_accuracy: 0.6236


937/Unknown  429s 458ms/step - loss: 0.9764 - sparse_categorical_accuracy: 0.6236


938/Unknown  430s 458ms/step - loss: 0.9762 - sparse_categorical_accuracy: 0.6237


939/Unknown  430s 458ms/step - loss: 0.9760 - sparse_categorical_accuracy: 0.6238


940/Unknown  431s 458ms/step - loss: 0.9757 - sparse_categorical_accuracy: 0.6239


941/Unknown  431s 458ms/step - loss: 0.9755 - sparse_categorical_accuracy: 0.6239


942/Unknown  432s 458ms/step - loss: 0.9753 - sparse_categorical_accuracy: 0.6240


943/Unknown  432s 458ms/step - loss: 0.9750 - sparse_categorical_accuracy: 0.6241


944/Unknown  433s 458ms/step - loss: 0.9748 - sparse_categorical_accuracy: 0.6242


945/Unknown  433s 458ms/step - loss: 0.9746 - sparse_categorical_accuracy: 0.6242


946/Unknown  434s 458ms/step - loss: 0.9744 - sparse_categorical_accuracy: 0.6243


947/Unknown  434s 458ms/step - loss: 0.9741 - sparse_categorical_accuracy: 0.6244


948/Unknown  435s 458ms/step - loss: 0.9739 - sparse_categorical_accuracy: 0.6244


949/Unknown  435s 458ms/step - loss: 0.9737 - sparse_categorical_accuracy: 0.6245


950/Unknown  436s 458ms/step - loss: 0.9734 - sparse_categorical_accuracy: 0.6246


951/Unknown  436s 458ms/step - loss: 0.9732 - sparse_categorical_accuracy: 0.6247


952/Unknown  437s 458ms/step - loss: 0.9730 - sparse_categorical_accuracy: 0.6247


953/Unknown  437s 458ms/step - loss: 0.9727 - sparse_categorical_accuracy: 0.6248


954/Unknown  438s 458ms/step - loss: 0.9725 - sparse_categorical_accuracy: 0.6249


955/Unknown  438s 458ms/step - loss: 0.9723 - sparse_categorical_accuracy: 0.6249


956/Unknown  439s 458ms/step - loss: 0.9721 - sparse_categorical_accuracy: 0.6250


957/Unknown  439s 458ms/step - loss: 0.9718 - sparse_categorical_accuracy: 0.6251


958/Unknown  439s 458ms/step - loss: 0.9716 - sparse_categorical_accuracy: 0.6252


959/Unknown  440s 458ms/step - loss: 0.9714 - sparse_categorical_accuracy: 0.6252


960/Unknown  440s 458ms/step - loss: 0.9712 - sparse_categorical_accuracy: 0.6253


961/Unknown  441s 458ms/step - loss: 0.9709 - sparse_categorical_accuracy: 0.6254


962/Unknown  441s 458ms/step - loss: 0.9707 - sparse_categorical_accuracy: 0.6254


963/Unknown  442s 458ms/step - loss: 0.9705 - sparse_categorical_accuracy: 0.6255


964/Unknown  442s 458ms/step - loss: 0.9703 - sparse_categorical_accuracy: 0.6256


965/Unknown  443s 458ms/step - loss: 0.9700 - sparse_categorical_accuracy: 0.6256


966/Unknown  443s 458ms/step - loss: 0.9698 - sparse_categorical_accuracy: 0.6257


967/Unknown  444s 458ms/step - loss: 0.9696 - sparse_categorical_accuracy: 0.6258


968/Unknown  444s 458ms/step - loss: 0.9694 - sparse_categorical_accuracy: 0.6259


969/Unknown  445s 458ms/step - loss: 0.9692 - sparse_categorical_accuracy: 0.6259


970/Unknown  445s 458ms/step - loss: 0.9689 - sparse_categorical_accuracy: 0.6260


971/Unknown  446s 458ms/step - loss: 0.9687 - sparse_categorical_accuracy: 0.6261


972/Unknown  446s 459ms/step - loss: 0.9685 - sparse_categorical_accuracy: 0.6261


973/Unknown  447s 458ms/step - loss: 0.9683 - sparse_categorical_accuracy: 0.6262


974/Unknown  447s 458ms/step - loss: 0.9680 - sparse_categorical_accuracy: 0.6263


975/Unknown  447s 458ms/step - loss: 0.9678 - sparse_categorical_accuracy: 0.6263


976/Unknown  448s 458ms/step - loss: 0.9676 - sparse_categorical_accuracy: 0.6264


977/Unknown  448s 458ms/step - loss: 0.9674 - sparse_categorical_accuracy: 0.6265


978/Unknown  449s 458ms/step - loss: 0.9672 - sparse_categorical_accuracy: 0.6265


979/Unknown  449s 458ms/step - loss: 0.9669 - sparse_categorical_accuracy: 0.6266


980/Unknown  449s 458ms/step - loss: 0.9667 - sparse_categorical_accuracy: 0.6267


981/Unknown  450s 458ms/step - loss: 0.9665 - sparse_categorical_accuracy: 0.6268


982/Unknown  450s 458ms/step - loss: 0.9663 - sparse_categorical_accuracy: 0.6268


983/Unknown  451s 458ms/step - loss: 0.9661 - sparse_categorical_accuracy: 0.6269


984/Unknown  451s 458ms/step - loss: 0.9659 - sparse_categorical_accuracy: 0.6270


985/Unknown  451s 458ms/step - loss: 0.9656 - sparse_categorical_accuracy: 0.6270


986/Unknown  452s 458ms/step - loss: 0.9654 - sparse_categorical_accuracy: 0.6271


987/Unknown  452s 458ms/step - loss: 0.9652 - sparse_categorical_accuracy: 0.6272


988/Unknown  453s 458ms/step - loss: 0.9650 - sparse_categorical_accuracy: 0.6272


989/Unknown  453s 458ms/step - loss: 0.9648 - sparse_categorical_accuracy: 0.6273


990/Unknown  454s 458ms/step - loss: 0.9646 - sparse_categorical_accuracy: 0.6274


991/Unknown  454s 458ms/step - loss: 0.9643 - sparse_categorical_accuracy: 0.6274


992/Unknown  455s 458ms/step - loss: 0.9641 - sparse_categorical_accuracy: 0.6275


993/Unknown  455s 458ms/step - loss: 0.9639 - sparse_categorical_accuracy: 0.6276


994/Unknown  456s 458ms/step - loss: 0.9637 - sparse_categorical_accuracy: 0.6276


995/Unknown  456s 458ms/step - loss: 0.9635 - sparse_categorical_accuracy: 0.6277


996/Unknown  457s 458ms/step - loss: 0.9633 - sparse_categorical_accuracy: 0.6278


997/Unknown  457s 458ms/step - loss: 0.9631 - sparse_categorical_accuracy: 0.6278


998/Unknown  458s 458ms/step - loss: 0.9628 - sparse_categorical_accuracy: 0.6279


999/Unknown  458s 458ms/step - loss: 0.9626 - sparse_categorical_accuracy: 0.6280



1000/未知 459秒 458毫秒/步 - 損失: 0.9624 - 稀疏類別準確度: 0.6280



1001/未知 459秒 458毫秒/步 - 損失: 0.9622 - 稀疏類別準確度: 0.6281



1002/未知 460秒 458毫秒/步 - 損失: 0.9620 - 稀疏類別準確度: 0.6282



1003/未知 460秒 458毫秒/步 - 損失: 0.9618 - 稀疏類別準確度: 0.6282



1004/未知 461秒 458毫秒/步 - 損失: 0.9616 - 稀疏類別準確度: 0.6283



1005/未知 461秒 458毫秒/步 - 損失: 0.9614 - 稀疏類別準確度: 0.6284



1006/未知 462秒 458毫秒/步 - 損失: 0.9612 - 稀疏類別準確度: 0.6284



1007/未知 462秒 458毫秒/步 - 損失: 0.9609 - 稀疏類別準確度: 0.6285



1008/未知 462秒 458毫秒/步 - 損失: 0.9607 - 稀疏類別準確度: 0.6286



1009/未知 463秒 458毫秒/步 - 損失: 0.9605 - 稀疏類別準確度: 0.6286



1010/未知 463秒 458毫秒/步 - 損失: 0.9603 - 稀疏類別準確度: 0.6287



1011/未知 464秒 458毫秒/步 - 損失: 0.9601 - 稀疏類別準確度: 0.6287



1012/未知 465秒 458毫秒/步 - 損失: 0.9599 - 稀疏類別準確度: 0.6288



1013/未知 465秒 458毫秒/步 - 損失: 0.9597 - 稀疏類別準確度: 0.6289



1014/未知 465秒 459毫秒/步 - 損失: 0.9595 - 稀疏類別準確度: 0.6289



1015/未知 466秒 459毫秒/步 - 損失: 0.9593 - 稀疏類別準確度: 0.6290



1016/未知 466秒 459毫秒/步 - 損失: 0.9591 - 稀疏類別準確度: 0.6291



1017/未知 467秒 459毫秒/步 - 損失: 0.9589 - 稀疏類別準確度: 0.6291



1018/未知 467秒 459毫秒/步 - 損失: 0.9587 - 稀疏類別準確度: 0.6292



1019/未知 468秒 459毫秒/步 - 損失: 0.9584 - 稀疏類別準確度: 0.6293



1020/未知 468秒 459毫秒/步 - 損失: 0.9582 - 稀疏類別準確度: 0.6293



1021/未知 469秒 459毫秒/步 - 損失: 0.9580 - 稀疏類別準確度: 0.6294



1022/未知 469秒 459毫秒/步 - 損失: 0.9578 - 稀疏類別準確度: 0.6295



1023/未知 470秒 459毫秒/步 - 損失: 0.9576 - 稀疏類別準確度: 0.6295



1024/未知 470秒 459毫秒/步 - 損失: 0.9574 - 稀疏類別準確度: 0.6296



1025/未知 471秒 459毫秒/步 - 損失: 0.9572 - 稀疏類別準確度: 0.6297



1026/未知 471秒 459毫秒/步 - 損失: 0.9570 - 稀疏類別準確度: 0.6297



1027/未知 472秒 459毫秒/步 - 損失: 0.9568 - 稀疏類別準確度: 0.6298



1028/未知 472秒 459毫秒/步 - 損失: 0.9566 - 稀疏類別準確度: 0.6298



1029/未知 473秒 459毫秒/步 - 損失: 0.9564 - 稀疏類別準確度: 0.6299



1030/未知 473秒 459毫秒/步 - 損失: 0.9562 - 稀疏類別準確度: 0.6300



1031/未知 474秒 459毫秒/步 - 損失: 0.9560 - 稀疏類別準確度: 0.6300



1032/未知 474秒 459毫秒/步 - 損失: 0.9558 - 稀疏類別準確度: 0.6301



1033/未知 475秒 459毫秒/步 - 損失: 0.9556 - 稀疏類別準確度: 0.6302



1034/未知 475秒 459毫秒/步 - 損失: 0.9554 - 稀疏類別準確度: 0.6302



1035/未知 476秒 459毫秒/步 - 損失: 0.9552 - 稀疏類別準確度: 0.6303



1036/未知 476秒 459毫秒/步 - 損失: 0.9550 - 稀疏類別準確度: 0.6304



1037/未知 477秒 459毫秒/步 - 損失: 0.9548 - 稀疏類別準確度: 0.6304



1038/未知 477秒 459毫秒/步 - 損失: 0.9546 - 稀疏類別準確度: 0.6305



1039/未知 478秒 459毫秒/步 - 損失: 0.9544 - 稀疏類別準確度: 0.6305



1040/未知 478秒 459毫秒/步 - 損失: 0.9542 - 稀疏類別準確度: 0.6306



1041/未知 479秒 459毫秒/步 - 損失: 0.9540 - 稀疏類別準確度: 0.6307



1042/未知 479秒 459毫秒/步 - 損失: 0.9538 - 稀疏類別準確度: 0.6307



1043/未知 480秒 459毫秒/步 - 損失: 0.9536 - 稀疏類別準確度: 0.6308



1044/未知 480秒 459毫秒/步 - 損失: 0.9534 - 稀疏類別準確度: 0.6309



1045/未知 481秒 459毫秒/步 - 損失: 0.9532 - 稀疏類別準確度: 0.6309



1046/未知 481秒 459毫秒/步 - 損失: 0.9530 - 稀疏類別準確度: 0.6310



1047/未知 482秒 459毫秒/步 - 損失: 0.9528 - 稀疏類別準確度: 0.6310



1048/未知 482秒 459毫秒/步 - 損失: 0.9526 - 稀疏類別準確度: 0.6311



1049/未知 483秒 459毫秒/步 - 損失: 0.9524 - 稀疏類別準確度: 0.6312



1050/未知 483秒 460毫秒/步 - 損失: 0.9522 - 稀疏類別準確度: 0.6312



1051/未知 484秒 460毫秒/步 - 損失: 0.9520 - 稀疏類別準確度: 0.6313



1052/未知 484秒 460毫秒/步 - 損失: 0.9518 - 稀疏類別準確度: 0.6314



1053/未知 484秒 460毫秒/步 - 損失: 0.9516 - 稀疏類別準確度: 0.6314



1054/未知 485秒 460毫秒/步 - 損失: 0.9514 - 稀疏類別準確度: 0.6315



1055/未知 485秒 460毫秒/步 - 損失: 0.9512 - 稀疏類別準確度: 0.6315



1056/未知 486秒 460毫秒/步 - 損失: 0.9510 - 稀疏類別準確度: 0.6316



1057/未知 486秒 460毫秒/步 - 損失: 0.9508 - 稀疏類別準確度: 0.6317



1058/未知 487秒 460毫秒/步 - 損失: 0.9506 - 稀疏類別準確度: 0.6317



1059/未知 487秒 460毫秒/步 - 損失: 0.9504 - 稀疏類別準確度: 0.6318



1060/未知 488秒 460毫秒/步 - 損失: 0.9502 - 稀疏類別準確度: 0.6318



1061/未知 488秒 460毫秒/步 - 損失: 0.9500 - 稀疏類別準確度: 0.6319



1062/未知 489秒 460毫秒/步 - 損失: 0.9498 - 稀疏類別準確度: 0.6320



1063/未知 489秒 460毫秒/步 - 損失: 0.9496 - 稀疏類別準確度: 0.6320



1064/未知 490秒 460毫秒/步 - 損失: 0.9495 - 稀疏類別準確度: 0.6321



1065/未知 490秒 460毫秒/步 - 損失: 0.9493 - 稀疏類別準確度: 0.6321



1066/未知 491秒 460毫秒/步 - 損失: 0.9491 - 稀疏類別準確度: 0.6322



1067/未知 491秒 460毫秒/步 - 損失: 0.9489 - 稀疏類別準確度: 0.6323



1068/未知 492秒 460毫秒/步 - 損失: 0.9487 - 稀疏類別準確度: 0.6323



1069/未知 492秒 460毫秒/步 - 損失: 0.9485 - 稀疏類別準確度: 0.6324



1070/未知 493秒 460毫秒/步 - 損失: 0.9483 - 稀疏類別準確度: 0.6324



1071/未知 493秒 460毫秒/步 - 損失: 0.9481 - 稀疏類別準確度: 0.6325



1072/未知 494秒 460毫秒/步 - 損失: 0.9479 - 稀疏類別準確度: 0.6326



1073/未知 494秒 460毫秒/步 - 損失: 0.9477 - 稀疏類別準確度: 0.6326



1074/未知 495秒 460毫秒/步 - 損失: 0.9475 - 稀疏類別準確度: 0.6327



1075/未知 495秒 460毫秒/步 - 損失: 0.9473 - 稀疏類別準確度: 0.6327



1076/未知 496秒 460毫秒/步 - 損失: 0.9471 - 稀疏類別準確度: 0.6328



1077/未知 496秒 460毫秒/步 - 損失: 0.9470 - 稀疏類別準確度: 0.6329



1078/未知 496秒 460毫秒/步 - 損失: 0.9468 - 稀疏類別準確度: 0.6329



1079/未知 497秒 460毫秒/步 - 損失: 0.9466 - 稀疏類別準確度: 0.6330



1080/未知 497秒 460毫秒/步 - 損失: 0.9464 - 稀疏類別準確度: 0.6330



1081/未知 498秒 460毫秒/步 - 損失: 0.9462 - 稀疏類別準確度: 0.6331



1082/未知 498秒 460毫秒/步 - 損失: 0.9460 - 稀疏類別準確度: 0.6332



1083/未知 499秒 460毫秒/步 - 損失: 0.9458 - 稀疏類別準確度: 0.6332



1084/未知 499秒 460毫秒/步 - 損失: 0.9456 - 稀疏類別準確度: 0.6333



1085/未知 500秒 460毫秒/步 - 損失: 0.9454 - 稀疏類別準確度: 0.6333



1086/未知 500秒 460毫秒/步 - 損失: 0.9453 - 稀疏類別準確度: 0.6334



1087/未知 501秒 460毫秒/步 - 損失: 0.9451 - 稀疏類別準確度: 0.6335



1088/未知 501秒 460毫秒/步 - 損失: 0.9449 - 稀疏類別準確度: 0.6335



1089/未知 502秒 460毫秒/步 - 損失: 0.9447 - 稀疏類別準確度: 0.6336



1090/未知 502秒 460毫秒/步 - 損失: 0.9445 - 稀疏類別準確度: 0.6336



1091/未知 503秒 460毫秒/步 - 損失: 0.9443 - 稀疏類別準確度: 0.6337



1092/未知 503秒 460毫秒/步 - 損失: 0.9441 - 稀疏類別準確度: 0.6337



1093/未知 503秒 460毫秒/步 - 損失: 0.9439 - 稀疏類別準確度: 0.6338



1094/未知 504秒 460毫秒/步 - 損失: 0.9438 - 稀疏類別準確度: 0.6339



1095/未知 504秒 460毫秒/步 - 損失: 0.9436 - 稀疏類別準確度: 0.6339



1096/未知 505秒 460毫秒/步 - 損失: 0.9434 - 稀疏類別準確度: 0.6340



1097/未知 505秒 460毫秒/步 - 損失: 0.9432 - 稀疏類別準確度: 0.6340



1098/未知 506秒 460毫秒/步 - 損失: 0.9430 - 稀疏類別準確度: 0.6341



1099/未知 506秒 460毫秒/步 - 損失: 0.9428 - 稀疏類別準確度: 0.6342



1100/未知 507秒 460毫秒/步 - 損失: 0.9427 - 稀疏類別準確度: 0.6342



1101/未知 507秒 460毫秒/步 - 損失: 0.9425 - 稀疏類別準確度: 0.6343



1102/未知 508秒 460毫秒/步 - 損失: 0.9423 - 稀疏類別準確度: 0.6343



1103/未知 508秒 460毫秒/步 - 損失: 0.9421 - 稀疏類別準確度: 0.6344



1104/未知 508秒 460毫秒/步 - 損失: 0.9419 - 稀疏類別準確度: 0.6344



1105/未知 509秒 460毫秒/步 - 損失: 0.9417 - 稀疏類別準確度: 0.6345



1106/未知 509秒 460毫秒/步 - 損失: 0.9416 - 稀疏類別準確度: 0.6346



1107/未知 510秒 460毫秒/步 - 損失: 0.9414 - 稀疏類別準確度: 0.6346



1108/未知 510秒 460毫秒/步 - 損失: 0.9412 - 稀疏類別準確度: 0.6347



1109/未知 510秒 460毫秒/步 - 損失: 0.9410 - 稀疏類別準確度: 0.6347



1110/未知 511秒 459毫秒/步 - 損失: 0.9408 - 稀疏類別準確度: 0.6348



1111/未知 511秒 459毫秒/步 - 損失: 0.9406 - 稀疏類別準確度: 0.6348



1112/未知 511秒 459毫秒/步 - 損失: 0.9405 - 稀疏類別準確度: 0.6349



1113/未知 512秒 459毫秒/步 - 損失: 0.9403 - 稀疏類別準確度: 0.6349



1114/未知 512秒 459毫秒/步 - 損失: 0.9401 - 稀疏類別準確度: 0.6350



1115/未知 512秒 459毫秒/步 - 損失: 0.9399 - 稀疏類別準確度: 0.6351



1116/未知 513秒 459毫秒/步 - 損失: 0.9397 - 稀疏類別準確度: 0.6351



1117/未知 513秒 459毫秒/步 - 損失: 0.9396 - 稀疏類別準確度: 0.6352



1118/未知 513秒 459毫秒/步 - 損失: 0.9394 - 稀疏類別準確度: 0.6352



1119/未知 514秒 459毫秒/步 - 損失: 0.9392 - 稀疏類別準確度: 0.6353



1120/未知 514秒 458毫秒/步 - 損失: 0.9390 - 稀疏類別準確度: 0.6353



1121/未知 515秒 458毫秒/步 - 損失: 0.9388 - 稀疏類別準確度: 0.6354



1122/未知 515秒 459毫秒/步 - 損失: 0.9387 - 稀疏類別準確度: 0.6355



1123/未知 515秒 459毫秒/步 - 損失: 0.9385 - 稀疏類別準確度: 0.6355



1124/未知 516秒 459毫秒/步 - 損失: 0.9383 - 稀疏類別準確度: 0.6356



1125/未知 516秒 459毫秒/步 - 損失: 0.9381 - 稀疏類別準確度: 0.6356



1126/未知 517秒 458毫秒/步 - 損失: 0.9379 - 稀疏類別準確度: 0.6357



1127/未知 517秒 458毫秒/步 - 損失: 0.9378 - 稀疏類別準確度: 0.6357



1128/未知 518秒 458毫秒/步 - 損失: 0.9376 - 稀疏類別準確度: 0.6358



1129/未知 518秒 458毫秒/步 - 損失: 0.9374 - 稀疏類別準確度: 0.6358



1130/未知 519秒 458毫秒/步 - 損失: 0.9372 - 稀疏類別準確度: 0.6359



1131/未知 519秒 458毫秒/步 - 損失: 0.9371 - 稀疏類別準確度: 0.6360



1132/未知 519秒 458毫秒/步 - 損失: 0.9369 - 稀疏類別準確度: 0.6360



1133/未知 520秒 458毫秒/步 - 損失: 0.9367 - 稀疏類別準確度: 0.6361



1134/未知 520秒 458毫秒/步 - 損失: 0.9365 - 稀疏類別準確度: 0.6361



1135/未知 521秒 458毫秒/步 - 損失: 0.9364 - 稀疏類別準確度: 0.6362



1136/未知 521秒 458毫秒/步 - 損失: 0.9362 - 稀疏類別準確度: 0.6362



1137/未知 522秒 458毫秒/步 - 損失: 0.9360 - 稀疏類別準確度: 0.6363



1138/未知 522秒 458毫秒/步 - 損失: 0.9358 - 稀疏類別準確度: 0.6363



1139/未知 523秒 458毫秒/步 - 損失: 0.9356 - 稀疏類別準確度: 0.6364



1140/未知 523秒 458毫秒/步 - 損失: 0.9355 - 稀疏類別準確度: 0.6364



1141/未知 524秒 458毫秒/步 - 損失: 0.9353 - 稀疏類別準確度: 0.6365



1142/未知 524秒 458毫秒/步 - 損失: 0.9351 - 稀疏類別準確度: 0.6366



1143/未知 525秒 458毫秒/步 - 損失: 0.9350 - 稀疏類別準確度: 0.6366



1144/未知 525秒 458毫秒/步 - 損失: 0.9348 - 稀疏類別準確度: 0.6367



1145/未知 525秒 458毫秒/步 - 損失: 0.9346 - 稀疏類別準確度: 0.6367



1146/未知 526秒 458毫秒/步 - 損失: 0.9344 - 稀疏類別準確度: 0.6368



1147/未知 526秒 458毫秒/步 - 損失: 0.9343 - 稀疏類別準確度: 0.6368



1148/未知 527秒 458毫秒/步 - 損失: 0.9341 - 稀疏類別準確度: 0.6369



1149/未知 527秒 458毫秒/步 - 損失: 0.9339 - 稀疏類別準確度: 0.6369



1150/未知 528秒 458毫秒/步 - 損失: 0.9337 - 稀疏類別準確度: 0.6370



1151/未知 528秒 458毫秒/步 - 損失: 0.9336 - 稀疏類別準確度: 0.6370



1152/未知 528秒 458毫秒/步 - 損失: 0.9334 - 稀疏類別準確度: 0.6371



1153/未知 529秒 458毫秒/步 - 損失: 0.9332 - 稀疏類別準確度: 0.6372



1154/未知 529秒 458毫秒/步 - 損失: 0.9330 - 稀疏類別準確度: 0.6372



1155/未知 530秒 458毫秒/步 - 損失: 0.9329 - 稀疏類別準確度: 0.6373



1156/未知 530秒 458毫秒/步 - 損失: 0.9327 - 稀疏類別準確度: 0.6373



1157/未知 530秒 458毫秒/步 - 損失: 0.9325 - 稀疏類別準確度: 0.6374



1158/未知 531秒 458毫秒/步 - 損失: 0.9324 - 稀疏類別準確度: 0.6374



1159/未知 531秒 458毫秒/步 - 損失: 0.9322 - 稀疏類別準確度: 0.6375



1160/未知 532秒 458毫秒/步 - 損失: 0.9320 - 稀疏類別準確度: 0.6375



1161/未知 532秒 458毫秒/步 - 損失: 0.9318 - 稀疏類別準確度: 0.6376



1162/未知 532秒 458毫秒/步 - 損失: 0.9317 - 稀疏類別準確度: 0.6376



1163/未知 533秒 458毫秒/步 - 損失: 0.9315 - 稀疏類別準確度: 0.6377



1164/未知 533秒 458毫秒/步 - 損失: 0.9313 - 稀疏類別準確度: 0.6377



1165/未知 534秒 458毫秒/步 - 損失: 0.9312 - 稀疏類別準確度: 0.6378



1166/未知 534秒 458毫秒/步 - 損失: 0.9310 - 稀疏類別準確度: 0.6378



1167/未知 535秒 458毫秒/步 - 損失: 0.9308 - 稀疏類別準確度: 0.6379



1168/未知 535秒 458毫秒/步 - 損失: 0.9307 - 稀疏類別準確度: 0.6380



1169/未知 536秒 458毫秒/步 - 損失: 0.9305 - 稀疏類別準確度: 0.6380



1170/未知 536秒 458毫秒/步 - 損失: 0.9303 - 稀疏類別準確度: 0.6381



1171/未知 537秒 458毫秒/步 - 損失: 0.9302 - 稀疏類別準確度: 0.6381



1172/未知 537秒 458毫秒/步 - 損失: 0.9300 - 稀疏類別準確度: 0.6382



1173/未知 538秒 458毫秒/步 - 損失: 0.9298 - 稀疏類別準確度: 0.6382



1174/未知 538秒 458毫秒/步 - 損失: 0.9297 - 稀疏類別準確度: 0.6383



1175/未知 538秒 458毫秒/步 - 損失: 0.9295 - 稀疏類別準確度: 0.6383



1176/未知 539秒 458毫秒/步 - 損失: 0.9293 - 稀疏類別準確度: 0.6384



1177/未知 539秒 458毫秒/步 - 損失: 0.9292 - 稀疏類別準確度: 0.6384



1178/未知 540秒 458毫秒/步 - 損失: 0.9290 - 稀疏類別準確度: 0.6385



1179/未知 540秒 458毫秒/步 - 損失: 0.9288 - 稀疏類別準確度: 0.6385



1180/未知 541秒 458毫秒/步 - 損失: 0.9287 - 稀疏類別準確度: 0.6386



1181/未知 541秒 458毫秒/步 - 損失: 0.9285 - 稀疏類別準確度: 0.6386



1182/未知 542秒 458毫秒/步 - 損失: 0.9283 - 稀疏類別準確度: 0.6387



1183/未知 542秒 458毫秒/步 - 損失: 0.9282 - 稀疏類別準確度: 0.6387



1184/未知 543秒 458毫秒/步 - 損失: 0.9280 - 稀疏類別準確度: 0.6388



1185/未知 543秒 458毫秒/步 - 損失: 0.9278 - 稀疏類別準確度: 0.6388



1186/未知 543秒 458毫秒/步 - 損失: 0.9277 - 稀疏類別準確度: 0.6389



1187/未知 544秒 458毫秒/步 - 損失: 0.9275 - 稀疏類別準確度: 0.6389



1188/未知 544秒 458毫秒/步驟 - 損失: 0.9273 - 稀疏類別準確度: 0.6390



1189/未知 545秒 458毫秒/步驟 - 損失: 0.9272 - 稀疏類別準確度: 0.6390



1190/未知 545秒 458毫秒/步驟 - 損失: 0.9270 - 稀疏類別準確度: 0.6391



1191/未知 546秒 458毫秒/步驟 - 損失: 0.9268 - 稀疏類別準確度: 0.6391



1192/未知 546秒 458毫秒/步驟 - 損失: 0.9267 - 稀疏類別準確度: 0.6392



1193/未知 547秒 458毫秒/步驟 - 損失: 0.9265 - 稀疏類別準確度: 0.6392



1194/未知 547秒 458毫秒/步驟 - 損失: 0.9263 - 稀疏類別準確度: 0.6393



1195/未知 548秒 458毫秒/步驟 - 損失: 0.9262 - 稀疏類別準確度: 0.6394



1196/未知 548秒 458毫秒/步驟 - 損失: 0.9260 - 稀疏類別準確度: 0.6394



1197/未知 548秒 458毫秒/步驟 - 損失: 0.9259 - 稀疏類別準確度: 0.6395



1198/未知 549秒 458毫秒/步驟 - 損失: 0.9257 - 稀疏類別準確度: 0.6395



1199/未知 549秒 458毫秒/步驟 - 損失: 0.9255 - 稀疏類別準確度: 0.6396



1200/未知 550秒 458毫秒/步驟 - 損失: 0.9254 - 稀疏類別準確度: 0.6396



1201/未知 550秒 458毫秒/步驟 - 損失: 0.9252 - 稀疏類別準確度: 0.6397



1202/未知 551秒 458毫秒/步驟 - 損失: 0.9250 - 稀疏類別準確度: 0.6397



1203/未知 551秒 458毫秒/步驟 - 損失: 0.9249 - 稀疏類別準確度: 0.6398



1204/未知 552秒 458毫秒/步驟 - 損失: 0.9247 - 稀疏類別準確度: 0.6398



1205/未知 552秒 458毫秒/步驟 - 損失: 0.9246 - 稀疏類別準確度: 0.6399



1206/未知 553秒 458毫秒/步驟 - 損失: 0.9244 - 稀疏類別準確度: 0.6399



1207/未知 553秒 458毫秒/步驟 - 損失: 0.9242 - 稀疏類別準確度: 0.6400



1208/未知 554秒 458毫秒/步驟 - 損失: 0.9241 - 稀疏類別準確度: 0.6400



1209/未知 554秒 458毫秒/步驟 - 損失: 0.9239 - 稀疏類別準確度: 0.6401



1210/未知 555秒 458毫秒/步驟 - 損失: 0.9238 - 稀疏類別準確度: 0.6401



1211/未知 555秒 458毫秒/步驟 - 損失: 0.9236 - 稀疏類別準確度: 0.6402



1212/未知 556秒 458毫秒/步驟 - 損失: 0.9234 - 稀疏類別準確度: 0.6402



1213/未知 556秒 458毫秒/步驟 - 損失: 0.9233 - 稀疏類別準確度: 0.6403



1214/未知 557秒 458毫秒/步驟 - 損失: 0.9231 - 稀疏類別準確度: 0.6403



1215/未知 557秒 458毫秒/步驟 - 損失: 0.9230 - 稀疏類別準確度: 0.6404



1216/未知 558秒 458毫秒/步驟 - 損失: 0.9228 - 稀疏類別準確度: 0.6404



1217/未知 558秒 458毫秒/步驟 - 損失: 0.9226 - 稀疏類別準確度: 0.6405



1218/未知 559秒 458毫秒/步驟 - 損失: 0.9225 - 稀疏類別準確度: 0.6405



1219/未知 559秒 458毫秒/步驟 - 損失: 0.9223 - 稀疏類別準確度: 0.6406



1220/未知 560秒 458毫秒/步驟 - 損失: 0.9222 - 稀疏類別準確度: 0.6406



1221/未知 560秒 458毫秒/步驟 - 損失: 0.9220 - 稀疏類別準確度: 0.6407



1222/未知 560秒 458毫秒/步驟 - 損失: 0.9218 - 稀疏類別準確度: 0.6407



1223/未知 561秒 458毫秒/步驟 - 損失: 0.9217 - 稀疏類別準確度: 0.6408



1224/未知 561秒 458毫秒/步驟 - 損失: 0.9215 - 稀疏類別準確度: 0.6408



1225/未知 562秒 458毫秒/步驟 - 損失: 0.9214 - 稀疏類別準確度: 0.6409



1226/未知 562秒 458毫秒/步驟 - 損失: 0.9212 - 稀疏類別準確度: 0.6409



1227/未知 563秒 458毫秒/步驟 - 損失: 0.9211 - 稀疏類別準確度: 0.6410



1228/未知 563秒 458毫秒/步驟 - 損失: 0.9209 - 稀疏類別準確度: 0.6410



1229/未知 564秒 458毫秒/步驟 - 損失: 0.9207 - 稀疏類別準確度: 0.6410



1230/未知 564秒 458毫秒/步驟 - 損失: 0.9206 - 稀疏類別準確度: 0.6411



1231/未知 565秒 458毫秒/步驟 - 損失: 0.9204 - 稀疏類別準確度: 0.6411



1232/未知 565秒 458毫秒/步驟 - 損失: 0.9203 - 稀疏類別準確度: 0.6412



1233/未知 566秒 458毫秒/步驟 - 損失: 0.9201 - 稀疏類別準確度: 0.6412



1234/未知 566秒 458毫秒/步驟 - 損失: 0.9200 - 稀疏類別準確度: 0.6413



1235/未知 567秒 458毫秒/步驟 - 損失: 0.9198 - 稀疏類別準確度: 0.6413



1236/未知 567秒 458毫秒/步驟 - 損失: 0.9197 - 稀疏類別準確度: 0.6414



1237/未知 568秒 458毫秒/步驟 - 損失: 0.9195 - 稀疏類別準確度: 0.6414



1238/未知 568秒 458毫秒/步驟 - 損失: 0.9193 - 稀疏類別準確度: 0.6415



1239/未知 569秒 458毫秒/步驟 - 損失: 0.9192 - 稀疏類別準確度: 0.6415



1240/未知 569秒 458毫秒/步驟 - 損失: 0.9190 - 稀疏類別準確度: 0.6416



1241/未知 569秒 458毫秒/步驟 - 損失: 0.9189 - 稀疏類別準確度: 0.6416



1242/未知 570秒 458毫秒/步驟 - 損失: 0.9187 - 稀疏類別準確度: 0.6417



1243/未知 570秒 458毫秒/步驟 - 損失: 0.9186 - 稀疏類別準確度: 0.6417



1244/未知 571秒 458毫秒/步驟 - 損失: 0.9184 - 稀疏類別準確度: 0.6418



1245/未知 571秒 458毫秒/步驟 - 損失: 0.9183 - 稀疏類別準確度: 0.6418



1246/未知 572秒 458毫秒/步驟 - 損失: 0.9181 - 稀疏類別準確度: 0.6419



1247/未知 572秒 458毫秒/步驟 - 損失: 0.9180 - 稀疏類別準確度: 0.6419



1248/未知 573秒 458毫秒/步驟 - 損失: 0.9178 - 稀疏類別準確度: 0.6420



1249/未知 573秒 458毫秒/步驟 - 損失: 0.9177 - 稀疏類別準確度: 0.6420



1250/未知 574秒 458毫秒/步驟 - 損失: 0.9175 - 稀疏類別準確度: 0.6421



1251/未知 574秒 458毫秒/步驟 - 損失: 0.9173 - 稀疏類別準確度: 0.6421



1252/未知 574秒 458毫秒/步驟 - 損失: 0.9172 - 稀疏類別準確度: 0.6422



1253/未知 575秒 458毫秒/步驟 - 損失: 0.9170 - 稀疏類別準確度: 0.6422



1254/未知 575秒 458毫秒/步驟 - 損失: 0.9169 - 稀疏類別準確度: 0.6423



1255/未知 576秒 458毫秒/步驟 - 損失: 0.9167 - 稀疏類別準確度: 0.6423



1256/未知 576秒 458毫秒/步驟 - 損失: 0.9166 - 稀疏類別準確度: 0.6424



1257/未知 577秒 458毫秒/步驟 - 損失: 0.9164 - 稀疏類別準確度: 0.6424



1258/未知 577秒 458毫秒/步驟 - 損失: 0.9163 - 稀疏類別準確度: 0.6424



1259/未知 578秒 458毫秒/步驟 - 損失: 0.9161 - 稀疏類別準確度: 0.6425



1260/未知 578秒 459毫秒/步驟 - 損失: 0.9160 - 稀疏類別準確度: 0.6425



1261/未知 579秒 459毫秒/步驟 - 損失: 0.9158 - 稀疏類別準確度: 0.6426



1262/未知 579秒 458毫秒/步驟 - 損失: 0.9157 - 稀疏類別準確度: 0.6426



1263/未知 580秒 459毫秒/步驟 - 損失: 0.9155 - 稀疏類別準確度: 0.6427



1264/未知 580秒 459毫秒/步驟 - 損失: 0.9154 - 稀疏類別準確度: 0.6427



1265/未知 581秒 459毫秒/步驟 - 損失: 0.9152 - 稀疏類別準確度: 0.6428



1266/未知 581秒 459毫秒/步驟 - 損失: 0.9151 - 稀疏類別準確度: 0.6428



1267/未知 582秒 459毫秒/步驟 - 損失: 0.9149 - 稀疏類別準確度: 0.6429



1268/未知 582秒 459毫秒/步驟 - 損失: 0.9148 - 稀疏類別準確度: 0.6429



1269/未知 583秒 459毫秒/步驟 - 損失: 0.9146 - 稀疏類別準確度: 0.6430



1270/未知 583秒 459毫秒/步驟 - 損失: 0.9145 - 稀疏類別準確度: 0.6430



1271/未知 584秒 459毫秒/步驟 - 損失: 0.9143 - 稀疏類別準確度: 0.6431



1272/未知 584秒 459毫秒/步驟 - 損失: 0.9142 - 稀疏類別準確度: 0.6431



1273/未知 584秒 459毫秒/步驟 - 損失: 0.9140 - 稀疏類別準確度: 0.6432



1274/未知 585秒 459毫秒/步驟 - 損失: 0.9139 - 稀疏類別準確度: 0.6432



1275/未知 585秒 459毫秒/步驟 - 損失: 0.9137 - 稀疏類別準確度: 0.6432



1276/未知 586秒 459毫秒/步驟 - 損失: 0.9136 - 稀疏類別準確度: 0.6433



1277/未知 586秒 459毫秒/步驟 - 損失: 0.9134 - 稀疏類別準確度: 0.6433



1278/未知 587秒 459毫秒/步驟 - 損失: 0.9133 - 稀疏類別準確度: 0.6434



1279/未知 587秒 459毫秒/步驟 - 損失: 0.9131 - 稀疏類別準確度: 0.6434



1280/未知 588秒 459毫秒/步驟 - 損失: 0.9130 - 稀疏類別準確度: 0.6435



1281/未知 588秒 459毫秒/步驟 - 損失: 0.9128 - 稀疏類別準確度: 0.6435



1282/未知 589秒 459毫秒/步驟 - 損失: 0.9127 - 稀疏類別準確度: 0.6436



1283/未知 589秒 459毫秒/步驟 - 損失: 0.9126 - 稀疏類別準確度: 0.6436



1284/未知 589秒 459毫秒/步驟 - 損失: 0.9124 - 稀疏類別準確度: 0.6437



1285/未知 590秒 458毫秒/步驟 - 損失: 0.9123 - 稀疏類別準確度: 0.6437



1286/未知 590秒 458毫秒/步驟 - 損失: 0.9121 - 稀疏類別準確度: 0.6438



1287/未知 591秒 458毫秒/步驟 - 損失: 0.9120 - 稀疏類別準確度: 0.6438



1288/未知 591秒 458毫秒/步驟 - 損失: 0.9118 - 稀疏類別準確度: 0.6438



1289/未知 591秒 458毫秒/步驟 - 損失: 0.9117 - 稀疏類別準確度: 0.6439



1290/未知 592秒 458毫秒/步驟 - 損失: 0.9115 - 稀疏類別準確度: 0.6439



1291/未知 592秒 458毫秒/步驟 - 損失: 0.9114 - 稀疏類別準確度: 0.6440



1292/未知 593秒 458毫秒/步驟 - 損失: 0.9112 - 稀疏類別準確度: 0.6440



1293/未知 593秒 458毫秒/步驟 - 損失: 0.9111 - 稀疏類別準確度: 0.6441



1294/未知 594秒 458毫秒/步驟 - 損失: 0.9109 - 稀疏類別準確度: 0.6441



1295/未知 594秒 458毫秒/步驟 - 損失: 0.9108 - 稀疏類別準確度: 0.6442



1296/未知 595秒 458毫秒/步驟 - 損失: 0.9107 - 稀疏類別準確度: 0.6442



1297/未知 595秒 458毫秒/步驟 - 損失: 0.9105 - 稀疏類別準確度: 0.6443



1298/未知 596秒 458毫秒/步驟 - 損失: 0.9104 - 稀疏類別準確度: 0.6443



1299/未知 596秒 458毫秒/步驟 - 損失: 0.9102 - 稀疏類別準確度: 0.6443



1300/未知 596秒 458毫秒/步驟 - 損失: 0.9101 - 稀疏類別準確度: 0.6444



1301/未知 597秒 458毫秒/步驟 - 損失: 0.9099 - 稀疏類別準確度: 0.6444



1302/未知 597秒 458毫秒/步驟 - 損失: 0.9098 - 稀疏類別準確度: 0.6445



1303/未知 598秒 458毫秒/步驟 - 損失: 0.9096 - 稀疏類別準確度: 0.6445



1304/未知 598秒 458毫秒/步驟 - 損失: 0.9095 - 稀疏類別準確度: 0.6446



1305/未知 599秒 458毫秒/步驟 - 損失: 0.9094 - 稀疏類別準確度: 0.6446



1306/未知 599秒 458毫秒/步驟 - 損失: 0.9092 - 稀疏類別準確度: 0.6447



1307/未知 600秒 458毫秒/步驟 - 損失: 0.9091 - 稀疏類別準確度: 0.6447



1308/未知 600秒 458毫秒/步驟 - 損失: 0.9089 - 稀疏類別準確度: 0.6448



1309/未知 601秒 458毫秒/步驟 - 損失: 0.9088 - 稀疏類別準確度: 0.6448



1310/未知 601秒 458毫秒/步驟 - 損失: 0.9086 - 稀疏類別準確度: 0.6448



1311/未知 602秒 458毫秒/步驟 - 損失: 0.9085 - 稀疏類別準確度: 0.6449



1312/未知 602秒 458毫秒/步驟 - 損失: 0.9084 - 稀疏類別準確度: 0.6449



1313/未知 602秒 458毫秒/步驟 - 損失: 0.9082 - 稀疏類別準確度: 0.6450



1314/未知 603秒 458毫秒/步驟 - 損失: 0.9081 - 稀疏類別準確度: 0.6450



1315/未知 603秒 458毫秒/步驟 - 損失: 0.9079 - 稀疏類別準確度: 0.6451



1316/未知 604秒 458毫秒/步驟 - 損失: 0.9078 - 稀疏類別準確度: 0.6451



1317/未知 604秒 458毫秒/步驟 - 損失: 0.9076 - 稀疏類別準確度: 0.6452



1318/未知 604秒 458毫秒/步驟 - 損失: 0.9075 - 稀疏類別準確度: 0.6452



1319/未知 605秒 458毫秒/步驟 - 損失: 0.9074 - 稀疏類別準確度: 0.6452



1320/未知 605秒 458毫秒/步驟 - 損失: 0.9072 - 稀疏類別準確度: 0.6453



1321/未知 605秒 458毫秒/步驟 - 損失: 0.9071 - 稀疏類別準確度: 0.6453



1322/未知 606秒 458毫秒/步驟 - 損失: 0.9069 - 稀疏類別準確度: 0.6454



1323/未知 606秒 458毫秒/步驟 - 損失: 0.9068 - 稀疏類別準確度: 0.6454



1324/未知 607秒 458毫秒/步驟 - 損失: 0.9067 - 稀疏類別準確度: 0.6455



1325/未知 607秒 458毫秒/步驟 - 損失: 0.9065 - 稀疏類別準確度: 0.6455



1326/未知 608秒 458毫秒/步驟 - 損失: 0.9064 - 稀疏類別準確度: 0.6455



1327/未知 608秒 458毫秒/步驟 - 損失: 0.9062 - 稀疏類別準確度: 0.6456



1328/未知 609秒 458毫秒/步驟 - 損失: 0.9061 - 稀疏類別準確度: 0.6456



1329/未知 609秒 458毫秒/步驟 - 損失: 0.9060 - 稀疏類別準確度: 0.6457



1330/未知 609秒 458毫秒/步驟 - 損失: 0.9058 - 稀疏類別準確度: 0.6457



1331/未知 610秒 458毫秒/步驟 - 損失: 0.9057 - 稀疏類別準確度: 0.6458



1332/未知 610秒 458毫秒/步驟 - 損失: 0.9055 - 稀疏類別準確度: 0.6458



1333/未知 611秒 458毫秒/步驟 - 損失: 0.9054 - 稀疏類別準確度: 0.6459



1334/未知 611秒 458毫秒/步驟 - 損失: 0.9053 - 稀疏類別準確度: 0.6459



1335/未知 612秒 458毫秒/步驟 - 損失: 0.9051 - 稀疏類別準確度: 0.6459



1336/未知 612秒 458毫秒/步驟 - 損失: 0.9050 - 稀疏類別準確度: 0.6460



1337/未知 613秒 458毫秒/步驟 - 損失: 0.9048 - 稀疏類別準確度: 0.6460



1338/未知 613秒 458毫秒/步驟 - 損失: 0.9047 - 稀疏類別準確度: 0.6461



1339/未知 614秒 458毫秒/步驟 - 損失: 0.9046 - 稀疏類別準確度: 0.6461



1340/未知 614秒 458毫秒/步驟 - 損失: 0.9044 - 稀疏類別準確度: 0.6462



1341/未知 614秒 458毫秒/步驟 - 損失: 0.9043 - 稀疏類別準確度: 0.6462



1342/未知 615秒 458毫秒/步驟 - 損失: 0.9042 - 稀疏類別準確度: 0.6462



1343/未知 615秒 458毫秒/步驟 - 損失: 0.9040 - 稀疏類別準確度: 0.6463



1344/未知 615秒 458毫秒/步驟 - 損失: 0.9039 - 稀疏類別準確度: 0.6463



1345/未知 616秒 458毫秒/步驟 - 損失: 0.9037 - 稀疏類別準確度: 0.6464



1346/未知 616秒 458毫秒/步驟 - 損失: 0.9036 - 稀疏類別準確度: 0.6464



1347/未知 617秒 457毫秒/步驟 - 損失: 0.9035 - 稀疏類別準確度: 0.6465



1348/未知 617秒 457毫秒/步驟 - 損失: 0.9033 - 稀疏類別準確度: 0.6465



1349/未知 618秒 457毫秒/步驟 - 損失: 0.9032 - 稀疏類別準確度: 0.6465



1350/未知 618秒 457毫秒/步驟 - 損失: 0.9031 - 稀疏類別準確度: 0.6466



1351/未知 618秒 457毫秒/步驟 - 損失: 0.9029 - 稀疏類別準確度: 0.6466



1352/未知 619秒 457毫秒/步驟 - 損失: 0.9028 - 稀疏類別準確度: 0.6467



1353/未知 619秒 457毫秒/步驟 - 損失: 0.9026 - 稀疏類別準確度: 0.6467



1354/未知 620秒 457毫秒/步驟 - 損失: 0.9025 - 稀疏類別準確度: 0.6468



1355/未知 620秒 457毫秒/步驟 - 損失: 0.9024 - 稀疏類別準確度: 0.6468



1356/未知 621秒 457毫秒/步驟 - 損失: 0.9022 - 稀疏類別準確度: 0.6468



1357/未知 621秒 457毫秒/步驟 - 損失: 0.9021 - 稀疏類別準確度: 0.6469



1358/未知 622秒 457毫秒/步驟 - 損失: 0.9020 - 稀疏類別準確度: 0.6469



1359/未知 622秒 457毫秒/步驟 - 損失: 0.9018 - 稀疏類別準確度: 0.6470



1360/未知 623秒 457毫秒/步驟 - 損失: 0.9017 - 稀疏類別準確度: 0.6470



1361/未知 623秒 457毫秒/步驟 - 損失: 0.9016 - 稀疏類別準確度: 0.6471



1362/未知 624秒 457毫秒/步驟 - 損失: 0.9014 - 稀疏類別準確度: 0.6471



1363/未知 624秒 457毫秒/步驟 - 損失: 0.9013 - 稀疏類別準確度: 0.6471



1364/未知 624秒 457毫秒/步驟 - 損失: 0.9012 - 稀疏類別準確度: 0.6472



1365/未知 625秒 457毫秒/步驟 - 損失: 0.9010 - 稀疏類別準確度: 0.6472



1366/未知 625秒 457毫秒/步驟 - 損失: 0.9009 - 稀疏類別準確度: 0.6473



1367/未知 625秒 457毫秒/步驟 - 損失: 0.9008 - 稀疏類別準確度: 0.6473



1368/未知 626秒 457毫秒/步驟 - 損失: 0.9006 - 稀疏類別準確度: 0.6474



1369/未知 626秒 457毫秒/步驟 - 損失: 0.9005 - 稀疏類別準確度: 0.6474



1370/未知 627秒 457毫秒/步驟 - 損失: 0.9004 - 稀疏類別準確度: 0.6474



1371/未知 627秒 457毫秒/步驟 - 損失: 0.9002 - 稀疏類別準確度: 0.6475



1372/未知 627秒 457毫秒/步驟 - 損失: 0.9001 - 稀疏類別準確度: 0.6475



1373/未知 628秒 457毫秒/步驟 - 損失: 0.9000 - 稀疏類別準確度: 0.6476



1374/未知 628秒 457毫秒/步驟 - 損失: 0.8998 - 稀疏類別準確度: 0.6476



1375/未知 629秒 457毫秒/步驟 - 損失: 0.8997 - 稀疏類別準確度: 0.6476



1376/未知 629秒 457毫秒/步驟 - 損失: 0.8996 - 稀疏類別準確度: 0.6477



1377/未知 630秒 457毫秒/步驟 - 損失: 0.8994 - 稀疏類別準確度: 0.6477



1378/未知 630秒 457毫秒/步驟 - 損失: 0.8993 - 稀疏類別準確度: 0.6478



1379/未知 631秒 457毫秒/步驟 - 損失: 0.8992 - 稀疏類別準確度: 0.6478



1380/未知 631秒 457毫秒/步驟 - 損失: 0.8990 - 稀疏類別準確度: 0.6479



1381/未知 632秒 457毫秒/步驟 - 損失: 0.8989 - 稀疏類別準確度: 0.6479



1382/未知 632秒 457毫秒/步驟 - 損失: 0.8988 - 稀疏類別準確度: 0.6479



1383/未知 633秒 457毫秒/步驟 - 損失: 0.8986 - 稀疏類別準確度: 0.6480



1384/未知 633秒 457毫秒/步驟 - 損失: 0.8985 - 稀疏類別準確度: 0.6480



1385/未知 633秒 457毫秒/步驟 - 損失: 0.8984 - 稀疏類別準確度: 0.6481



1386/未知 634秒 457毫秒/步驟 - 損失: 0.8982 - 稀疏類別準確度: 0.6481



1387/未知 634秒 457毫秒/步驟 - 損失: 0.8981 - 稀疏類別準確度: 0.6481



1388/未知 634秒 457毫秒/步驟 - 損失: 0.8980 - 稀疏類別準確度: 0.6482



1389/未知 635秒 457毫秒/步驟 - 損失: 0.8978 - 稀疏類別準確度: 0.6482



1390/未知 635秒 457毫秒/步驟 - 損失: 0.8977 - 稀疏類別準確度: 0.6483



1391/未知 636秒 457毫秒/步驟 - 損失: 0.8976 - 稀疏類別準確度: 0.6483



1392/未知 636秒 457毫秒/步驟 - 損失: 0.8974 - 稀疏類別準確度: 0.6483



1393/未知 636秒 456毫秒/步驟 - 損失: 0.8973 - 稀疏類別準確度: 0.6484



1394/未知 637秒 456毫秒/步驟 - 損失: 0.8972 - 稀疏類別準確度: 0.6484



1395/未知 637秒 456毫秒/步驟 - 損失: 0.8971 - 稀疏類別準確度: 0.6485



1396/未知 638秒 456毫秒/步驟 - 損失: 0.8969 - 稀疏類別準確度: 0.6485



1397/未知 638秒 456毫秒/步驟 - 損失: 0.8968 - 稀疏類別準確度: 0.6485



1398/未知 639秒 456毫秒/步驟 - 損失: 0.8967 - 稀疏類別準確度: 0.6486



1399/未知 639秒 456毫秒/步驟 - 損失: 0.8965 - 稀疏類別準確度: 0.6486



1400/未知 640秒 456毫秒/步驟 - 損失: 0.8964 - 稀疏類別準確度: 0.6487



1401/未知 640秒 456毫秒/步驟 - 損失: 0.8963 - 稀疏類別準確度: 0.6487



1402/未知 640秒 456毫秒/步驟 - 損失: 0.8962 - 稀疏類別準確度: 0.6488



1403/未知 641秒 456毫秒/步驟 - 損失: 0.8960 - 稀疏類別準確度: 0.6488



1404/未知 641秒 456毫秒/步驟 - 損失: 0.8959 - 稀疏類別準確度: 0.6488



1405/未知 642秒 456毫秒/步驟 - 損失: 0.8958 - 稀疏類別準確度: 0.6489



1406/未知 642秒 456毫秒/步驟 - 損失: 0.8956 - 稀疏類別準確度: 0.6489



1407/未知 643秒 456毫秒/步驟 - 損失: 0.8955 - 稀疏類別準確度: 0.6490



1408/未知 643秒 456毫秒/步驟 - 損失: 0.8954 - 稀疏類別準確度: 0.6490



1409/未知 644秒 457毫秒/步驟 - 損失: 0.8953 - 稀疏類別準確度: 0.6490



1410/未知 644秒 457毫秒/步驟 - 損失: 0.8951 - 稀疏類別準確度: 0.6491



1411/未知 645秒 457毫秒/步驟 - 損失: 0.8950 - 稀疏類別準確度: 0.6491



1412/未知 645秒 457毫秒/步驟 - 損失: 0.8949 - 稀疏類別準確度: 0.6492



1413/未知 646秒 457毫秒/步驟 - 損失: 0.8947 - 稀疏類別準確度: 0.6492



1414/未知 646秒 457毫秒/步驟 - 損失: 0.8946 - 稀疏類別準確度: 0.6492



1415/未知 647秒 457毫秒/步驟 - 損失: 0.8945 - 稀疏類別準確度: 0.6493



1416/未知 647秒 457毫秒/步驟 - 損失: 0.8944 - 稀疏類別準確度: 0.6493



1417/未知 647秒 457毫秒/步驟 - 損失: 0.8942 - 稀疏類別準確度: 0.6494



1418/未知 648秒 457毫秒/步驟 - 損失: 0.8941 - 稀疏類別準確度: 0.6494



1419/未知 648秒 457毫秒/步驟 - 損失: 0.8940 - 稀疏類別準確度: 0.6494



1420/未知 649秒 456毫秒/步驟 - 損失: 0.8939 - 稀疏類別準確度: 0.6495



1421/未知 649秒 456毫秒/步驟 - 損失: 0.8937 - 稀疏類別準確度: 0.6495



1422/未知 650秒 456毫秒/步驟 - 損失: 0.8936 - 稀疏類別準確度: 0.6495



1423/未知 650秒 456毫秒/步驟 - 損失: 0.8935 - 稀疏類別準確度: 0.6496



1424/未知 651秒 456毫秒/步驟 - 損失: 0.8933 - 稀疏類別準確度: 0.6496



1425/未知 651秒 456毫秒/步驟 - 損失: 0.8932 - 稀疏類別準確度: 0.6497



1426/未知 651秒 456毫秒/步驟 - 損失: 0.8931 - 稀疏類別準確度: 0.6497



1427/未知 652秒 456毫秒/步驟 - 損失: 0.8930 - 稀疏類別準確度: 0.6497



1428/未知 652秒 456毫秒/步驟 - 損失: 0.8928 - 稀疏類別準確度: 0.6498



1429/未知 653秒 456毫秒/步驟 - 損失: 0.8927 - 稀疏類別準確度: 0.6498



1430/未知 653秒 456毫秒/步驟 - 損失: 0.8926 - 稀疏類別準確度: 0.6499



1431/未知 653秒 456毫秒/步驟 - 損失: 0.8925 - 稀疏類別準確度: 0.6499



1432/未知 654秒 456毫秒/步驟 - 損失: 0.8923 - 稀疏類別準確度: 0.6499



1433/未知 654秒 456毫秒/步驟 - 損失: 0.8922 - 稀疏類別準確度: 0.6500



1434/未知 655秒 456毫秒/步驟 - 損失: 0.8921 - 稀疏類別準確度: 0.6500



1435/未知 655秒 456毫秒/步驟 - 損失: 0.8920 - 稀疏類別準確度: 0.6501



1436/未知 655秒 456毫秒/步驟 - 損失: 0.8918 - 稀疏類別準確度: 0.6501



1437/未知 656秒 456毫秒/步驟 - 損失: 0.8917 - 稀疏類別準確度: 0.6501



1438/未知 656秒 456毫秒/步驟 - 損失: 0.8916 - 稀疏類別準確度: 0.6502



1439/未知 657秒 456毫秒/步驟 - 損失: 0.8915 - 稀疏類別準確度: 0.6502



1440/未知 657秒 456毫秒/步驟 - 損失: 0.8913 - 稀疏類別準確度: 0.6503



1441/未知 657秒 456毫秒/步驟 - 損失: 0.8912 - 稀疏類別準確度: 0.6503



1442/未知 658秒 456毫秒/步驟 - 損失: 0.8911 - 稀疏類別準確度: 0.6503



1443/未知 658秒 456毫秒/步驟 - 損失: 0.8910 - 稀疏類別準確度: 0.6504



1444/未知 659秒 456毫秒/步驟 - 損失: 0.8909 - 稀疏類別準確度: 0.6504



1445/未知 659秒 456毫秒/步驟 - 損失: 0.8907 - 稀疏類別準確度: 0.6504



1446/未知 660秒 456毫秒/步驟 - 損失: 0.8906 - 稀疏類別準確度: 0.6505



1447/未知 660秒 456毫秒/步驟 - 損失: 0.8905 - 稀疏類別準確度: 0.6505



1448/未知 661秒 456毫秒/步驟 - 損失: 0.8904 - 稀疏類別準確度: 0.6506



1449/未知 661秒 456毫秒/步驟 - 損失: 0.8902 - 稀疏類別準確度: 0.6506



1450/未知 662秒 456毫秒/步驟 - 損失: 0.8901 - 稀疏類別準確度: 0.6506



1451/未知 662秒 456毫秒/步驟 - 損失: 0.8900 - 稀疏類別準確度: 0.6507



1452/未知 662秒 456毫秒/步驟 - 損失: 0.8899 - 稀疏類別準確度: 0.6507



1453/未知 663秒 456毫秒/步驟 - 損失: 0.8897 - 稀疏類別準確度: 0.6508



1454/未知 663秒 456毫秒/步驟 - 損失: 0.8896 - 稀疏類別準確度: 0.6508



1455/未知 664秒 456毫秒/步驟 - 損失: 0.8895 - 稀疏類別準確度: 0.6508



1456/未知 664秒 456毫秒/步驟 - 損失: 0.8894 - 稀疏類別準確度: 0.6509



1457/未知 665秒 456毫秒/步驟 - 損失: 0.8893 - 稀疏類別準確度: 0.6509



1458/未知 665秒 456毫秒/步驟 - 損失: 0.8891 - 稀疏類別準確度: 0.6509



1459/未知 665秒 456毫秒/步驟 - 損失: 0.8890 - 稀疏類別準確度: 0.6510



1460/未知 666秒 456毫秒/步驟 - 損失: 0.8889 - 稀疏類別準確度: 0.6510



1461/未知 666秒 456毫秒/步驟 - 損失: 0.8888 - 稀疏類別準確度: 0.6511



1462/未知 667秒 456毫秒/步驟 - 損失: 0.8887 - 稀疏類別準確度: 0.6511



1463/未知 667秒 455毫秒/步驟 - 損失: 0.8885 - 稀疏類別準確度: 0.6511



1464/未知 667秒 455毫秒/步驟 - 損失: 0.8884 - 稀疏類別準確度: 0.6512



1465/未知 668秒 455毫秒/步驟 - 損失: 0.8883 - 稀疏類別準確度: 0.6512



1466/未知 668秒 455毫秒/步驟 - 損失: 0.8882 - 稀疏類別準確度: 0.6512



1467/未知 669秒 455毫秒/步驟 - 損失: 0.8880 - 稀疏類別準確度: 0.6513



1468/未知 669秒 455毫秒/步驟 - 損失: 0.8879 - 稀疏類別準確度: 0.6513



1469/未知 669秒 455毫秒/步驟 - 損失: 0.8878 - 稀疏類別準確度: 0.6514



1470/未知 670秒 455毫秒/步驟 - 損失: 0.8877 - 稀疏類別準確度: 0.6514



1471/未知 670秒 455毫秒/步驟 - 損失: 0.8876 - 稀疏類別準確度: 0.6514



1472/未知 671秒 455毫秒/步驟 - 損失: 0.8874 - 稀疏類別準確度: 0.6515



1473/未知 671秒 455毫秒/步驟 - 損失: 0.8873 - 稀疏類別準確度: 0.6515



1474/未知 672秒 455毫秒/步驟 - 損失: 0.8872 - 稀疏類別準確度: 0.6515



1475/未知 672秒 455毫秒/步驟 - 損失: 0.8871 - 稀疏類別準確度: 0.6516



1476/未知 673秒 455毫秒/步驟 - 損失: 0.8870 - 稀疏類別準確度: 0.6516



1477/未知 673秒 455毫秒/步驟 - 損失: 0.8868 - 稀疏類別準確度: 0.6517



1478/未知 673秒 455毫秒/步驟 - 損失: 0.8867 - 稀疏類別準確度: 0.6517



1479/未知 674秒 455毫秒/步驟 - 損失: 0.8866 - 稀疏類別準確度: 0.6517



1480/未知 674秒 455毫秒/步驟 - 損失: 0.8865 - 稀疏類別準確度: 0.6518



1481/未知 674秒 455毫秒/步驟 - 損失: 0.8864 - 稀疏類別準確度: 0.6518



1482/未知 675秒 455毫秒/步驟 - 損失: 0.8863 - 稀疏類別準確度: 0.6518



1483/未知 675秒 455毫秒/步驟 - 損失: 0.8861 - 稀疏類別準確度: 0.6519



1484/未知 676秒 455毫秒/步驟 - 損失: 0.8860 - 稀疏類別準確度: 0.6519



1485/未知 676秒 455毫秒/步驟 - 損失: 0.8859 - 稀疏類別準確度: 0.6520



1486/未知 677秒 455毫秒/步驟 - 損失: 0.8858 - 稀疏類別準確度: 0.6520



1487/未知 677秒 455毫秒/步驟 - 損失: 0.8857 - 稀疏類別準確度: 0.6520



1488/未知 677秒 455毫秒/步驟 - 損失: 0.8855 - 稀疏類別準確度: 0.6521



1489/未知 678秒 455毫秒/步驟 - 損失: 0.8854 - 稀疏類別準確度: 0.6521



1490/未知 678秒 455毫秒/步驟 - 損失: 0.8853 - 稀疏類別準確度: 0.6521



1491/未知 679秒 455毫秒/步驟 - 損失: 0.8852 - 稀疏類別準確度: 0.6522



1492/未知 679秒 455毫秒/步驟 - 損失: 0.8851 - 稀疏類別準確度: 0.6522



1493/未知 679秒 455毫秒/步驟 - 損失: 0.8850 - 稀疏類別準確度: 0.6523



1494/未知 680秒 455毫秒/步驟 - 損失: 0.8848 - 稀疏類別準確度: 0.6523



1495/未知 680秒 455毫秒/步驟 - 損失: 0.8847 - 稀疏類別準確度: 0.6523



1496/未知 681秒 455毫秒/步驟 - 損失: 0.8846 - 稀疏類別準確度: 0.6524



1497/未知 681秒 455毫秒/步驟 - 損失: 0.8845 - 稀疏類別準確度: 0.6524



1498/未知 682秒 455毫秒/步驟 - 損失: 0.8844 - 稀疏類別準確度: 0.6524



1499/未知 682秒 455毫秒/步驟 - 損失: 0.8843 - 稀疏類別準確度: 0.6525



1500/未知 683秒 455毫秒/步驟 - 損失: 0.8841 - 稀疏類別準確度: 0.6525



1501/未知 683秒 455毫秒/步驟 - 損失: 0.8840 - 稀疏類別準確度: 0.6525



1502/未知 684秒 455毫秒/步驟 - 損失: 0.8839 - 稀疏類別準確度: 0.6526



1503/未知 684秒 455毫秒/步驟 - 損失: 0.8838 - 稀疏類別準確度: 0.6526



1504/未知 685秒 455毫秒/步驟 - 損失: 0.8837 - 稀疏類別準確度: 0.6527



1505/未知 685秒 455毫秒/步驟 - 損失: 0.8836 - 稀疏類別準確度: 0.6527



1506/未知 685秒 455毫秒/步驟 - 損失: 0.8834 - 稀疏類別準確度: 0.6527



1507/未知 686秒 455毫秒/步驟 - 損失: 0.8833 - 稀疏類別準確度: 0.6528



1508/未知 686秒 455毫秒/步驟 - 損失: 0.8832 - 稀疏類別準確度: 0.6528



1509/未知 687秒 455毫秒/步驟 - 損失: 0.8831 - 稀疏類別準確度: 0.6528



1510/未知 687秒 455毫秒/步驟 - 損失: 0.8830 - 稀疏類別準確度: 0.6529



1511/未知 687秒 455毫秒/步驟 - 損失: 0.8829 - 稀疏類別準確度: 0.6529



1512/未知 688秒 454毫秒/步驟 - 損失: 0.8827 - 稀疏類別準確度: 0.6529



1513/未知 688秒 454毫秒/步驟 - 損失: 0.8826 - 稀疏類別準確度: 0.6530



1514/未知 688秒 454毫秒/步驟 - 損失: 0.8825 - 稀疏類別準確度: 0.6530



1515/未知 689秒 454毫秒/步驟 - 損失: 0.8824 - 稀疏類別準確度: 0.6531



1516/未知 689秒 454毫秒/步驟 - 損失: 0.8823 - 稀疏類別準確度: 0.6531



1517/未知 690秒 454毫秒/步驟 - 損失: 0.8822 - 稀疏類別準確度: 0.6531



1518/未知 690秒 454毫秒/步驟 - 損失: 0.8821 - 稀疏類別準確度: 0.6532



1519/未知 690秒 454毫秒/步驟 - 損失: 0.8819 - 稀疏類別準確度: 0.6532



1520/未知 691秒 454毫秒/步驟 - 損失: 0.8818 - 稀疏類別準確度: 0.6532



1521/未知 691秒 454毫秒/步驟 - 損失: 0.8817 - 稀疏類別準確度: 0.6533



1522/未知 692秒 454毫秒/步驟 - 損失: 0.8816 - 稀疏類別準確度: 0.6533



1523/未知 692秒 454毫秒/步驟 - 損失: 0.8815 - 稀疏類別準確度: 0.6533



1524/未知 693秒 454毫秒/步驟 - 損失: 0.8814 - 稀疏類別準確度: 0.6534



1525/未知 693秒 454毫秒/步驟 - 損失: 0.8813 - 稀疏類別準確度: 0.6534



1526/未知 694秒 454毫秒/步驟 - 損失: 0.8811 - 稀疏類別準確度: 0.6534



1527/未知 694秒 454毫秒/步驟 - 損失: 0.8810 - 稀疏類別準確度: 0.6535



1528/未知 695秒 454毫秒/步驟 - 損失: 0.8809 - 稀疏類別準確度: 0.6535



1529/未知 695秒 454毫秒/步驟 - 損失: 0.8808 - 稀疏類別準確度: 0.6536



1530/未知 695秒 454毫秒/步驟 - 損失: 0.8807 - 稀疏類別準確度: 0.6536



1531/未知 696秒 454毫秒/步驟 - 損失: 0.8806 - 稀疏類別準確度: 0.6536



1532/未知 696秒 454毫秒/步驟 - 損失: 0.8805 - 稀疏類別準確度: 0.6537



1533/未知 697秒 454毫秒/步驟 - 損失: 0.8803 - 稀疏類別準確度: 0.6537



1534/未知 697秒 454毫秒/步驟 - 損失: 0.8802 - 稀疏類別準確度: 0.6537



1535/未知 697秒 454毫秒/步驟 - 損失: 0.8801 - 稀疏類別準確度: 0.6538



1536/未知 698秒 454毫秒/步驟 - 損失: 0.8800 - 稀疏類別準確度: 0.6538



1537/未知 698秒 454毫秒/步驟 - 損失: 0.8799 - 稀疏類別準確度: 0.6538



1538/未知 699秒 454毫秒/步驟 - 損失: 0.8798 - 稀疏類別準確度: 0.6539



1539/未知 699秒 454毫秒/步驟 - 損失: 0.8797 - 稀疏類別準確度: 0.6539



1540/未知 699秒 454毫秒/步驟 - 損失: 0.8796 - 稀疏類別準確度: 0.6539



1541/未知 700秒 454毫秒/步驟 - 損失: 0.8794 - 稀疏類別準確度: 0.6540



1542/Unknown 700秒 454毫秒/步 - 損失: 0.8793 - 稀疏分類準確度: 0.6540



1543/Unknown 701秒 454毫秒/步 - 損失: 0.8792 - 稀疏分類準確度: 0.6540



1544/Unknown 701秒 454毫秒/步 - 損失: 0.8791 - 稀疏分類準確度: 0.6541



1545/Unknown 702秒 454毫秒/步 - 損失: 0.8790 - 稀疏分類準確度: 0.6541



1546/Unknown 702秒 454毫秒/步 - 損失: 0.8789 - 稀疏分類準確度: 0.6542



1547/Unknown 702秒 454毫秒/步 - 損失: 0.8788 - 稀疏分類準確度: 0.6542



1548/Unknown 703秒 454毫秒/步 - 損失: 0.8787 - 稀疏分類準確度: 0.6542



1549/Unknown 703秒 454毫秒/步 - 損失: 0.8786 - 稀疏分類準確度: 0.6543



1550/Unknown 704秒 454毫秒/步 - 損失: 0.8784 - 稀疏分類準確度: 0.6543



1551/Unknown 704秒 454毫秒/步 - 損失: 0.8783 - 稀疏分類準確度: 0.6543



1552/Unknown 705秒 454毫秒/步 - 損失: 0.8782 - 稀疏分類準確度: 0.6544



1553/Unknown 705秒 454毫秒/步 - 損失: 0.8781 - 稀疏分類準確度: 0.6544



1554/Unknown 705秒 454毫秒/步 - 損失: 0.8780 - 稀疏分類準確度: 0.6544



1555/Unknown 706秒 453毫秒/步 - 損失: 0.8779 - 稀疏分類準確度: 0.6545



1556/Unknown 706秒 453毫秒/步 - 損失: 0.8778 - 稀疏分類準確度: 0.6545



1557/Unknown 706秒 453毫秒/步 - 損失: 0.8777 - 稀疏分類準確度: 0.6545



1558/Unknown 707秒 453毫秒/步 - 損失: 0.8776 - 稀疏分類準確度: 0.6546



1559/Unknown 707秒 453毫秒/步 - 損失: 0.8774 - 稀疏分類準確度: 0.6546



1560/Unknown 708秒 453毫秒/步 - 損失: 0.8773 - 稀疏分類準確度: 0.6546



1561/Unknown 708秒 453毫秒/步 - 損失: 0.8772 - 稀疏分類準確度: 0.6547



1562/Unknown 708秒 453毫秒/步 - 損失: 0.8771 - 稀疏分類準確度: 0.6547



1563/Unknown 709秒 453毫秒/步 - 損失: 0.8770 - 稀疏分類準確度: 0.6547



1564/Unknown 709秒 453毫秒/步 - 損失: 0.8769 - 稀疏分類準確度: 0.6548



1565/Unknown 710秒 453毫秒/步 - 損失: 0.8768 - 稀疏分類準確度: 0.6548



1566/Unknown 710秒 453毫秒/步 - 損失: 0.8767 - 稀疏分類準確度: 0.6548



1567/Unknown 711秒 453毫秒/步 - 損失: 0.8766 - 稀疏分類準確度: 0.6549



1568/Unknown 711秒 453毫秒/步 - 損失: 0.8765 - 稀疏分類準確度: 0.6549



1569/Unknown 711秒 453毫秒/步 - 損失: 0.8763 - 稀疏分類準確度: 0.6549



1570/Unknown 712秒 453毫秒/步 - 損失: 0.8762 - 稀疏分類準確度: 0.6550



1571/Unknown 712秒 453毫秒/步 - 損失: 0.8761 - 稀疏分類準確度: 0.6550



1572/Unknown 713秒 453毫秒/步 - 損失: 0.8760 - 稀疏分類準確度: 0.6550



1573/Unknown 713秒 453毫秒/步 - 損失: 0.8759 - 稀疏分類準確度: 0.6551



1574/Unknown 714秒 453毫秒/步 - 損失: 0.8758 - 稀疏分類準確度: 0.6551



1575/Unknown 714秒 453毫秒/步 - 損失: 0.8757 - 稀疏分類準確度: 0.6552



1576/Unknown 715秒 453毫秒/步 - 損失: 0.8756 - 稀疏分類準確度: 0.6552



1577/Unknown 715秒 453毫秒/步 - 損失: 0.8755 - 稀疏分類準確度: 0.6552



1578/Unknown 715秒 453毫秒/步 - 損失: 0.8754 - 稀疏分類準確度: 0.6553



1579/Unknown 716秒 453毫秒/步 - 損失: 0.8753 - 稀疏分類準確度: 0.6553



1580/Unknown 716秒 453毫秒/步 - 損失: 0.8752 - 稀疏分類準確度: 0.6553



1581/Unknown 716秒 453毫秒/步 - 損失: 0.8750 - 稀疏分類準確度: 0.6554



1582/Unknown 717秒 453毫秒/步 - 損失: 0.8749 - 稀疏分類準確度: 0.6554



1583/Unknown 717秒 453毫秒/步 - 損失: 0.8748 - 稀疏分類準確度: 0.6554



1584/Unknown 718秒 453毫秒/步 - 損失: 0.8747 - 稀疏分類準確度: 0.6555



1585/Unknown 718秒 453毫秒/步 - 損失: 0.8746 - 稀疏分類準確度: 0.6555



1586/Unknown 718秒 453毫秒/步 - 損失: 0.8745 - 稀疏分類準確度: 0.6555



1587/Unknown 719秒 453毫秒/步 - 損失: 0.8744 - 稀疏分類準確度: 0.6556



1588/Unknown 719秒 453毫秒/步 - 損失: 0.8743 - 稀疏分類準確度: 0.6556



1589/Unknown 720秒 453毫秒/步 - 損失: 0.8742 - 稀疏分類準確度: 0.6556



1590/Unknown 720秒 453毫秒/步 - 損失: 0.8741 - 稀疏分類準確度: 0.6557



1591/Unknown 721秒 453毫秒/步 - 損失: 0.8740 - 稀疏分類準確度: 0.6557



1592/Unknown 721秒 452毫秒/步 - 損失: 0.8739 - 稀疏分類準確度: 0.6557



1593/Unknown 721秒 452毫秒/步 - 損失: 0.8738 - 稀疏分類準確度: 0.6558



1594/Unknown 722秒 452毫秒/步 - 損失: 0.8737 - 稀疏分類準確度: 0.6558



1595/Unknown 722秒 452毫秒/步 - 損失: 0.8735 - 稀疏分類準確度: 0.6558



1596/Unknown 723秒 452毫秒/步 - 損失: 0.8734 - 稀疏分類準確度: 0.6559



1597/Unknown 723秒 453毫秒/步 - 損失: 0.8733 - 稀疏分類準確度: 0.6559



1598/Unknown 724秒 453毫秒/步 - 損失: 0.8732 - 稀疏分類準確度: 0.6559



1599/Unknown 724秒 453毫秒/步 - 損失: 0.8731 - 稀疏分類準確度: 0.6560



1600/Unknown 725秒 453毫秒/步 - 損失: 0.8730 - 稀疏分類準確度: 0.6560



1601/Unknown 725秒 452毫秒/步 - 損失: 0.8729 - 稀疏分類準確度: 0.6560



1602/Unknown 725秒 452毫秒/步 - 損失: 0.8728 - 稀疏分類準確度: 0.6561



1603/Unknown 726秒 452毫秒/步 - 損失: 0.8727 - 稀疏分類準確度: 0.6561



1604/Unknown 726秒 452毫秒/步 - 損失: 0.8726 - 稀疏分類準確度: 0.6561



1605/Unknown 726秒 452毫秒/步 - 損失: 0.8725 - 稀疏分類準確度: 0.6562



1606/Unknown 727秒 452毫秒/步 - 損失: 0.8724 - 稀疏分類準確度: 0.6562



1607/Unknown 727秒 452毫秒/步 - 損失: 0.8723 - 稀疏分類準確度: 0.6562



1608/Unknown 728秒 452毫秒/步 - 損失: 0.8722 - 稀疏分類準確度: 0.6563



1609/Unknown 728秒 452毫秒/步 - 損失: 0.8721 - 稀疏分類準確度: 0.6563



1610/Unknown 728秒 452毫秒/步 - 損失: 0.8720 - 稀疏分類準確度: 0.6563



1611/Unknown 729秒 452毫秒/步 - 損失: 0.8719 - 稀疏分類準確度: 0.6564



1612/Unknown 729秒 452毫秒/步 - 損失: 0.8717 - 稀疏分類準確度: 0.6564



1613/Unknown 730秒 452毫秒/步 - 損失: 0.8716 - 稀疏分類準確度: 0.6564



1614/Unknown 730秒 452毫秒/步 - 損失: 0.8715 - 稀疏分類準確度: 0.6565



1615/Unknown 730秒 452毫秒/步 - 損失: 0.8714 - 稀疏分類準確度: 0.6565



1616/Unknown 731秒 452毫秒/步 - 損失: 0.8713 - 稀疏分類準確度: 0.6565



1617/Unknown 731秒 452毫秒/步 - 損失: 0.8712 - 稀疏分類準確度: 0.6566



1618/Unknown 732秒 452毫秒/步 - 損失: 0.8711 - 稀疏分類準確度: 0.6566



1619/Unknown 732秒 452毫秒/步 - 損失: 0.8710 - 稀疏分類準確度: 0.6566



1620/Unknown 733秒 452毫秒/步 - 損失: 0.8709 - 稀疏分類準確度: 0.6567



1621/Unknown 733秒 452毫秒/步 - 損失: 0.8708 - 稀疏分類準確度: 0.6567



1622/Unknown 734秒 452毫秒/步 - 損失: 0.8707 - 稀疏分類準確度: 0.6567



1623/Unknown 734秒 452毫秒/步 - 損失: 0.8706 - 稀疏分類準確度: 0.6567



1624/Unknown 734秒 452毫秒/步 - 損失: 0.8705 - 稀疏分類準確度: 0.6568



1625/Unknown 735秒 452毫秒/步 - 損失: 0.8704 - 稀疏分類準確度: 0.6568



1626/Unknown 735秒 452毫秒/步 - 損失: 0.8703 - 稀疏分類準確度: 0.6568



1627/Unknown 736秒 452毫秒/步 - 損失: 0.8702 - 稀疏分類準確度: 0.6569



1628/Unknown 736秒 452毫秒/步 - 損失: 0.8701 - 稀疏分類準確度: 0.6569



1629/Unknown 736秒 452毫秒/步 - 損失: 0.8700 - 稀疏分類準確度: 0.6569



1630/Unknown 737秒 452毫秒/步 - 損失: 0.8699 - 稀疏分類準確度: 0.6570



1631/Unknown 737秒 452毫秒/步 - 損失: 0.8698 - 稀疏分類準確度: 0.6570



1632/Unknown 738秒 452毫秒/步 - 損失: 0.8697 - 稀疏分類準確度: 0.6570



1633/Unknown 738秒 452毫秒/步 - 損失: 0.8696 - 稀疏分類準確度: 0.6571



1634/Unknown 738秒 451毫秒/步 - 損失: 0.8695 - 稀疏分類準確度: 0.6571



1635/Unknown 739秒 451毫秒/步 - 損失: 0.8694 - 稀疏分類準確度: 0.6571



1636/Unknown 739秒 451毫秒/步 - 損失: 0.8693 - 稀疏分類準確度: 0.6572



1637/Unknown 739秒 451毫秒/步 - 損失: 0.8692 - 稀疏分類準確度: 0.6572



1638/Unknown 740秒 451毫秒/步 - 損失: 0.8690 - 稀疏分類準確度: 0.6572



1639/Unknown 740秒 451毫秒/步 - 損失: 0.8689 - 稀疏分類準確度: 0.6573



1640/Unknown 741秒 451毫秒/步 - 損失: 0.8688 - 稀疏分類準確度: 0.6573



1641/Unknown 741秒 451毫秒/步 - 損失: 0.8687 - 稀疏分類準確度: 0.6573



1642/Unknown 742秒 451毫秒/步 - 損失: 0.8686 - 稀疏分類準確度: 0.6574



1643/Unknown 742秒 451毫秒/步 - 損失: 0.8685 - 稀疏分類準確度: 0.6574



1644/Unknown 743秒 451毫秒/步 - 損失: 0.8684 - 稀疏分類準確度: 0.6574



1645/Unknown 743秒 451毫秒/步 - 損失: 0.8683 - 稀疏分類準確度: 0.6575



1646/Unknown 743秒 451毫秒/步 - 損失: 0.8682 - 稀疏分類準確度: 0.6575



1647/Unknown 744秒 451毫秒/步 - 損失: 0.8681 - 稀疏分類準確度: 0.6575



1648/Unknown 744秒 451毫秒/步 - 損失: 0.8680 - 稀疏分類準確度: 0.6576



1649/Unknown 744秒 451毫秒/步 - 損失: 0.8679 - 稀疏分類準確度: 0.6576



1650/Unknown 745秒 451毫秒/步 - 損失: 0.8678 - 稀疏分類準確度: 0.6576



1651/Unknown 745秒 451毫秒/步 - 損失: 0.8677 - 稀疏分類準確度: 0.6577



1652/Unknown 746秒 451毫秒/步 - 損失: 0.8676 - 稀疏分類準確度: 0.6577



1653/Unknown 746秒 451毫秒/步 - 損失: 0.8675 - 稀疏分類準確度: 0.6577



1654/Unknown 746秒 451毫秒/步 - 損失: 0.8674 - 稀疏分類準確度: 0.6577



1655/Unknown 747秒 451毫秒/步 - 損失: 0.8673 - 稀疏分類準確度: 0.6578



1656/Unknown 747秒 451毫秒/步 - 損失: 0.8672 - 稀疏分類準確度: 0.6578



1657/Unknown 748秒 451毫秒/步 - 損失: 0.8671 - 稀疏分類準確度: 0.6578



1658/Unknown 748秒 451毫秒/步 - 損失: 0.8670 - 稀疏分類準確度: 0.6579



1659/Unknown 749秒 451毫秒/步 - 損失: 0.8669 - 稀疏分類準確度: 0.6579



1660/Unknown 749秒 451毫秒/步 - 損失: 0.8668 - 稀疏分類準確度: 0.6579



1661/Unknown 749秒 451毫秒/步 - 損失: 0.8667 - 稀疏分類準確度: 0.6580



1662/Unknown 750秒 451毫秒/步 - 損失: 0.8666 - 稀疏分類準確度: 0.6580



1663/Unknown 750秒 451毫秒/步 - 損失: 0.8665 - 稀疏分類準確度: 0.6580



1664/Unknown 750秒 451毫秒/步 - 損失: 0.8664 - 稀疏分類準確度: 0.6581



1665/Unknown 751秒 451毫秒/步 - 損失: 0.8663 - 稀疏分類準確度: 0.6581



1666/Unknown 751秒 451毫秒/步 - 損失: 0.8662 - 稀疏分類準確度: 0.6581



1667/Unknown 752秒 451毫秒/步 - 損失: 0.8661 - 稀疏分類準確度: 0.6582



1668/Unknown 752秒 451毫秒/步 - 損失: 0.8660 - 稀疏分類準確度: 0.6582



1669/Unknown 753秒 451毫秒/步 - 損失: 0.8659 - 稀疏分類準確度: 0.6582



1670/Unknown 753秒 451毫秒/步 - 損失: 0.8658 - 稀疏分類準確度: 0.6583



1671/Unknown 754秒 451毫秒/步 - 損失: 0.8657 - 稀疏分類準確度: 0.6583



1672/Unknown 754秒 451毫秒/步 - 損失: 0.8656 - 稀疏分類準確度: 0.6583



1673/Unknown 755秒 451毫秒/步 - 損失: 0.8655 - 稀疏分類準確度: 0.6583



1674/Unknown 755秒 451毫秒/步 - 損失: 0.8654 - 稀疏分類準確度: 0.6584



1675/Unknown 755秒 451毫秒/步 - 損失: 0.8653 - 稀疏分類準確度: 0.6584



1676/Unknown 756秒 451毫秒/步 - 損失: 0.8652 - 稀疏分類準確度: 0.6584



1677/Unknown 756秒 451毫秒/步 - 損失: 0.8651 - 稀疏分類準確度: 0.6585



1678/Unknown 757秒 451毫秒/步 - 損失: 0.8650 - 稀疏分類準確度: 0.6585



1679/Unknown 757秒 450毫秒/步 - 損失: 0.8649 - 稀疏分類準確度: 0.6585



1680/Unknown 757秒 450毫秒/步 - 損失: 0.8648 - 稀疏分類準確度: 0.6586



1681/Unknown 758秒 450毫秒/步 - 損失: 0.8647 - 稀疏分類準確度: 0.6586



1682/Unknown 758秒 450毫秒/步 - 損失: 0.8646 - 稀疏分類準確度: 0.6586



1683/Unknown 758秒 450毫秒/步 - 損失: 0.8645 - 稀疏分類準確度: 0.6587



1684/Unknown 759秒 450毫秒/步 - 損失: 0.8644 - 稀疏分類準確度: 0.6587



1685/Unknown 759秒 450毫秒/步 - 損失: 0.8643 - 稀疏分類準確度: 0.6587



1686/Unknown 760秒 450毫秒/步 - 損失: 0.8642 - 稀疏分類準確度: 0.6587



1687/Unknown 760秒 450毫秒/步 - 損失: 0.8641 - 稀疏分類準確度: 0.6588



1688/Unknown 760秒 450毫秒/步 - 損失: 0.8640 - 稀疏分類準確度: 0.6588



1689/Unknown 761秒 450毫秒/步 - 損失: 0.8639 - 稀疏分類準確度: 0.6588



1690/Unknown 761秒 450毫秒/步 - 損失: 0.8638 - 稀疏分類準確度: 0.6589



1691/Unknown 762秒 450毫秒/步 - 損失: 0.8637 - 稀疏分類準確度: 0.6589



1692/Unknown 762秒 450毫秒/步 - 損失: 0.8636 - 稀疏分類準確度: 0.6589



1693/Unknown 762秒 450毫秒/步 - 損失: 0.8635 - 稀疏分類準確度: 0.6590



1694/Unknown 763秒 450毫秒/步 - 損失: 0.8634 - 稀疏分類準確度: 0.6590



1695/Unknown 763秒 450毫秒/步 - 損失: 0.8633 - 稀疏分類準確度: 0.6590



1696/Unknown 764秒 450毫秒/步 - 損失: 0.8632 - 稀疏分類準確度: 0.6591



1697/Unknown 764秒 450毫秒/步 - 損失: 0.8632 - 稀疏分類準確度: 0.6591



1698/Unknown 765秒 450毫秒/步 - 損失: 0.8631 - 稀疏分類準確度: 0.6591



1699/Unknown 765秒 450毫秒/步 - 損失: 0.8630 - 稀疏分類準確度: 0.6591



1700/Unknown 766秒 450毫秒/步 - 損失: 0.8629 - 稀疏分類準確度: 0.6592



1701/Unknown 766秒 450毫秒/步 - 損失: 0.8628 - 稀疏分類準確度: 0.6592



1702/Unknown 766秒 450毫秒/步 - 損失: 0.8627 - 稀疏分類準確度: 0.6592



1703/Unknown 767秒 450毫秒/步 - 損失: 0.8626 - 稀疏分類準確度: 0.6593



1704/Unknown 767秒 450毫秒/步 - 損失: 0.8625 - 稀疏分類準確度: 0.6593



1705/Unknown 768秒 450毫秒/步 - 損失: 0.8624 - 稀疏分類準確度: 0.6593



1706/Unknown 768秒 450毫秒/步 - 損失: 0.8623 - 稀疏分類準確度: 0.6594



1707/Unknown 768秒 450毫秒/步 - 損失: 0.8622 - 稀疏分類準確度: 0.6594



1708/Unknown 769秒 450毫秒/步 - 損失: 0.8621 - 稀疏分類準確度: 0.6594



1709/Unknown 769秒 450毫秒/步 - 損失: 0.8620 - 稀疏分類準確度: 0.6595



1710/Unknown 770秒 450毫秒/步 - 損失: 0.8619 - 稀疏分類準確度: 0.6595



1711/Unknown 770秒 450毫秒/步 - 損失: 0.8618 - 稀疏分類準確度: 0.6595



1712/Unknown 770秒 450毫秒/步 - 損失: 0.8617 - 稀疏分類準確度: 0.6595



1713/Unknown 771秒 450毫秒/步 - 損失: 0.8616 - 稀疏分類準確度: 0.6596



1714/Unknown 771秒 450毫秒/步 - 損失: 0.8615 - 稀疏分類準確度: 0.6596



1715/Unknown 772秒 450毫秒/步 - 損失: 0.8614 - 稀疏分類準確度: 0.6596



1716/Unknown 772秒 450毫秒/步 - 損失: 0.8613 - 稀疏分類準確度: 0.6597



1717/Unknown 773秒 450毫秒/步 - 損失: 0.8612 - 稀疏分類準確度: 0.6597



1718/Unknown 773秒 450毫秒/步 - 損失: 0.8611 - 稀疏分類準確度: 0.6597



1719/Unknown 774秒 450毫秒/步 - 損失: 0.8610 - 稀疏分類準確度: 0.6598



1720/Unknown 774秒 450毫秒/步 - 損失: 0.8609 - 稀疏分類準確度: 0.6598



1721/Unknown 774秒 450毫秒/步 - 損失: 0.8608 - 稀疏分類準確度: 0.6598



1722/Unknown 775秒 450毫秒/步 - 損失: 0.8607 - 稀疏分類準確度: 0.6598



1723/Unknown 775秒 450毫秒/步 - 損失: 0.8606 - 稀疏分類準確度: 0.6599



1724/Unknown 776秒 450毫秒/步 - 損失: 0.8606 - 稀疏分類準確度: 0.6599



1725/Unknown 776秒 450毫秒/步 - 損失: 0.8605 - 稀疏分類準確度: 0.6599



1726/Unknown 777秒 450毫秒/步 - 損失: 0.8604 - 稀疏分類準確度: 0.6600



1727/Unknown 777秒 450毫秒/步 - 損失: 0.8603 - 稀疏分類準確度: 0.6600



1728/Unknown 777秒 450毫秒/步 - 損失: 0.8602 - 稀疏分類準確度: 0.6600



1729/Unknown 778秒 450毫秒/步 - 損失: 0.8601 - 稀疏分類準確度: 0.6601



1730/Unknown 778秒 449毫秒/步 - 損失: 0.8600 - 稀疏分類準確度: 0.6601



1731/Unknown 779秒 449毫秒/步 - 損失: 0.8599 - 稀疏分類準確度: 0.6601



1732/Unknown 779秒 449毫秒/步 - 損失: 0.8598 - 稀疏分類準確度: 0.6601



1733/Unknown 779秒 449毫秒/步 - 損失: 0.8597 - 稀疏分類準確度: 0.6602



1734/Unknown 780秒 449毫秒/步 - 損失: 0.8596 - 稀疏分類準確度: 0.6602



1735/Unknown 780秒 449毫秒/步 - 損失: 0.8595 - 稀疏分類準確度: 0.6602



1736/Unknown 780秒 449毫秒/步 - 損失: 0.8594 - 稀疏分類準確度: 0.6603



1737/Unknown 781秒 449毫秒/步 - 損失: 0.8593 - 稀疏分類準確度: 0.6603



1738/Unknown 781秒 449毫秒/步 - 損失: 0.8592 - 稀疏分類準確度: 0.6603



1739/Unknown 782秒 449毫秒/步 - 損失: 0.8591 - 稀疏分類準確度: 0.6603



1740/Unknown 782秒 449毫秒/步 - 損失: 0.8590 - 稀疏分類準確度: 0.6604



1741/Unknown 782秒 449毫秒/步 - 損失: 0.8589 - 稀疏分類準確度: 0.6604



1742/Unknown 783秒 449毫秒/步 - 損失: 0.8589 - 稀疏分類準確度: 0.6604



1743/Unknown 783秒 449毫秒/步 - 損失: 0.8588 - 稀疏分類準確度: 0.6605



1744/Unknown 784秒 449毫秒/步 - 損失: 0.8587 - 稀疏分類準確度: 0.6605



1745/Unknown 784秒 449毫秒/步 - 損失: 0.8586 - 稀疏分類準確度: 0.6605



1746/Unknown 785秒 449毫秒/步 - 損失: 0.8585 - 稀疏分類準確度: 0.6606



1747/Unknown 785秒 449毫秒/步 - 損失: 0.8584 - 稀疏分類準確度: 0.6606



1748/Unknown 786秒 449毫秒/步 - 損失: 0.8583 - 稀疏分類準確度: 0.6606



1749/Unknown 786秒 449毫秒/步 - 損失: 0.8582 - 稀疏分類準確度: 0.6606



1750/Unknown 787秒 449毫秒/步 - 損失: 0.8581 - 稀疏分類準確度: 0.6607



1751/Unknown 787秒 449毫秒/步 - 損失: 0.8580 - 稀疏分類準確度: 0.6607



1752/Unknown 787秒 449毫秒/步 - 損失: 0.8579 - 稀疏分類準確度: 0.6607



1753/Unknown 788秒 449毫秒/步 - 損失: 0.8578 - 稀疏分類準確度: 0.6608



1754/Unknown 788秒 449毫秒/步 - 損失: 0.8577 - 稀疏分類準確度: 0.6608



1755/Unknown 789秒 449毫秒/步 - 損失: 0.8576 - 稀疏分類準確度: 0.6608



1756/Unknown 789秒 449毫秒/步 - 損失: 0.8576 - 稀疏分類準確度: 0.6608



1757/Unknown 789秒 449毫秒/步 - 損失: 0.8575 - 稀疏分類準確度: 0.6609



1758/Unknown 790秒 449毫秒/步 - 損失: 0.8574 - 稀疏分類準確度: 0.6609



1759/Unknown 790秒 449毫秒/步 - 損失: 0.8573 - 稀疏分類準確度: 0.6609



1760/Unknown 791秒 449毫秒/步 - 損失: 0.8572 - 稀疏分類準確度: 0.6610



1761/Unknown 791秒 449毫秒/步 - 損失: 0.8571 - 稀疏分類準確度: 0.6610



1762/Unknown 792秒 449毫秒/步 - 損失: 0.8570 - 稀疏分類準確度: 0.6610



1763/Unknown 792秒 449毫秒/步 - 損失: 0.8569 - 稀疏分類準確度: 0.6610



1764/Unknown 792秒 449毫秒/步 - 損失: 0.8568 - 稀疏分類準確度: 0.6611



1765/Unknown 793秒 449毫秒/步 - 損失: 0.8567 - 稀疏分類準確度: 0.6611



1766/Unknown 793秒 449毫秒/步 - 損失: 0.8566 - 稀疏分類準確度: 0.6611



1767/Unknown 794秒 449毫秒/步 - 損失: 0.8565 - 稀疏分類準確度: 0.6612



1768/Unknown 794秒 449毫秒/步 - 損失: 0.8564 - 稀疏分類準確度: 0.6612



1769/Unknown 795秒 449毫秒/步 - 損失: 0.8564 - 稀疏分類準確度: 0.6612



1770/Unknown 795秒 449毫秒/步 - 損失: 0.8563 - 稀疏分類準確度: 0.6612



1771/Unknown 796秒 449毫秒/步 - 損失: 0.8562 - 稀疏分類準確度: 0.6613



1772/Unknown 796秒 449毫秒/步 - 損失: 0.8561 - 稀疏分類準確度: 0.6613



1773/Unknown 796秒 449毫秒/步 - 損失: 0.8560 - 稀疏分類準確度: 0.6613



1774/Unknown 797秒 449毫秒/步 - 損失: 0.8559 - 稀疏分類準確度: 0.6614



1775/Unknown 797秒 449毫秒/步 - 損失: 0.8558 - 稀疏分類準確度: 0.6614



1776/Unknown 797秒 449毫秒/步 - 損失: 0.8557 - 稀疏分類準確度: 0.6614



1777/Unknown 798秒 449毫秒/步 - 損失: 0.8556 - 稀疏分類準確度: 0.6614



1778/Unknown 798秒 449毫秒/步 - 損失: 0.8555 - 稀疏分類準確度: 0.6615



1779/Unknown 799秒 449毫秒/步 - 損失: 0.8554 - 稀疏分類準確度: 0.6615



1780/Unknown 799秒 449毫秒/步 - 損失: 0.8554 - 稀疏分類準確度: 0.6615



1781/Unknown 799秒 449毫秒/步 - 損失: 0.8553 - 稀疏分類準確度: 0.6616



1782/Unknown 800秒 449毫秒/步 - 損失: 0.8552 - 稀疏分類準確度: 0.6616



1783/Unknown 800秒 448毫秒/步 - 損失: 0.8551 - 稀疏分類準確度: 0.6616



1784/Unknown 801秒 448毫秒/步 - 損失: 0.8550 - 稀疏分類準確度: 0.6616



1785/Unknown 801秒 448毫秒/步 - 損失: 0.8549 - 稀疏分類準確度: 0.6617



1786/Unknown 801秒 448毫秒/步 - 損失: 0.8548 - 稀疏分類準確度: 0.6617



1787/Unknown 802秒 448毫秒/步 - 損失: 0.8547 - 稀疏分類準確度: 0.6617



1788/Unknown 802秒 448毫秒/步 - 損失: 0.8546 - 稀疏分類準確度: 0.6618



1789/Unknown 803秒 448毫秒/步 - 損失: 0.8545 - 稀疏分類準確度: 0.6618



1790/Unknown 803秒 448毫秒/步 - 損失: 0.8545 - 稀疏分類準確度: 0.6618



1791/Unknown 803秒 448毫秒/步 - 損失: 0.8544 - 稀疏分類準確度: 0.6618



1792/Unknown 804秒 448毫秒/步 - 損失: 0.8543 - 稀疏分類準確度: 0.6619



1793/Unknown 804秒 448毫秒/步 - 損失: 0.8542 - 稀疏分類準確度: 0.6619



1794/Unknown 805秒 448毫秒/步 - 損失: 0.8541 - 稀疏分類準確度: 0.6619



1795/Unknown 805秒 448毫秒/步 - 損失: 0.8540 - 稀疏分類準確度: 0.6620



1796/Unknown 805秒 448毫秒/步 - 損失: 0.8539 - 稀疏分類準確度: 0.6620



1797/Unknown 806秒 448毫秒/步 - 損失: 0.8538 - 稀疏分類準確度: 0.6620



1798/Unknown 806秒 448毫秒/步 - 損失: 0.8537 - 稀疏分類準確度: 0.6620



1799/Unknown 807秒 448毫秒/步 - 損失: 0.8536 - 稀疏分類準確度: 0.6621



1800/Unknown 807秒 448毫秒/步 - 損失: 0.8536 - 稀疏分類準確度: 0.6621



1801/Unknown 808秒 448毫秒/步 - 損失: 0.8535 - 稀疏分類準確度: 0.6621



1802/Unknown 808秒 448毫秒/步 - 損失: 0.8534 - 稀疏分類準確度: 0.6622



1803/Unknown 808秒 448毫秒/步 - 損失: 0.8533 - 稀疏分類準確度: 0.6622



1804/Unknown 809秒 448毫秒/步 - 損失: 0.8532 - 稀疏分類準確度: 0.6622



1805/Unknown 809秒 448毫秒/步 - 損失: 0.8531 - 稀疏分類準確度: 0.6622



1806/Unknown 810秒 448毫秒/步 - 損失: 0.8530 - 稀疏分類準確度: 0.6623



1807/Unknown 810秒 448毫秒/步 - 損失: 0.8529 - 稀疏分類準確度: 0.6623



1808/Unknown 811秒 448毫秒/步 - 損失: 0.8528 - 稀疏分類準確度: 0.6623



1809/Unknown 811秒 448毫秒/步 - 損失: 0.8528 - 稀疏分類準確度: 0.6623



1810/Unknown 811秒 448毫秒/步 - 損失: 0.8527 - 稀疏分類準確度: 0.6624



1811/Unknown 812秒 448毫秒/步 - 損失: 0.8526 - 稀疏分類準確度: 0.6624



1812/Unknown 812秒 448毫秒/步 - 損失: 0.8525 - 稀疏分類準確度: 0.6624



1813/Unknown 812秒 448毫秒/步 - 損失: 0.8524 - 稀疏分類準確度: 0.6625



1814/Unknown 813秒 448毫秒/步 - 損失: 0.8523 - 稀疏分類準確度: 0.6625



1815/Unknown 813秒 448毫秒/步 - 損失: 0.8522 - 稀疏分類準確度: 0.6625



1816/Unknown 814秒 448毫秒/步 - 損失: 0.8521 - 稀疏分類準確度: 0.6625



1817/Unknown 814秒 448毫秒/步 - 損失: 0.8520 - 稀疏分類準確度: 0.6626



1818/Unknown 814秒 448毫秒/步 - 損失: 0.8520 - 稀疏分類準確度: 0.6626



1819/Unknown 815秒 448毫秒/步 - 損失: 0.8519 - 稀疏分類準確度: 0.6626



1820/Unknown 815秒 448毫秒/步 - 損失: 0.8518 - 稀疏分類準確度: 0.6627



1821/Unknown 816秒 448毫秒/步 - 損失: 0.8517 - 稀疏分類準確度: 0.6627



1822/Unknown 816秒 448毫秒/步 - 損失: 0.8516 - 稀疏分類準確度: 0.6627



1823/Unknown 817秒 448毫秒/步 - 損失: 0.8515 - 稀疏分類準確度: 0.6627



1824/Unknown 817秒 448毫秒/步 - 損失: 0.8514 - 稀疏分類準確度: 0.6628



1825/Unknown 818秒 448毫秒/步 - 損失: 0.8513 - 稀疏分類準確度: 0.6628



1826/Unknown 818秒 448毫秒/步 - 損失: 0.8513 - 稀疏分類準確度: 0.6628



1827/Unknown 819秒 448毫秒/步 - 損失: 0.8512 - 稀疏分類準確度: 0.6628



1828/Unknown 819秒 448毫秒/步 - 損失: 0.8511 - 稀疏分類準確度: 0.6629



1829/Unknown 819秒 448毫秒/步 - 損失: 0.8510 - 稀疏分類準確度: 0.6629



1830/Unknown 820秒 448毫秒/步 - 損失: 0.8509 - 稀疏分類準確度: 0.6629



1831/Unknown 820秒 448毫秒/步 - 損失: 0.8508 - 稀疏分類準確度: 0.6630



1832/Unknown 821秒 448毫秒/步 - 損失: 0.8507 - 稀疏分類準確度: 0.6630



1833/Unknown 821秒 448毫秒/步 - 損失: 0.8507 - 稀疏分類準確度: 0.6630



1834/Unknown 821秒 448毫秒/步 - 損失: 0.8506 - 稀疏分類準確度: 0.6630



1835/Unknown 822秒 447毫秒/步 - 損失: 0.8505 - 稀疏分類準確度: 0.6631



1836/Unknown 822秒 447毫秒/步 - 損失: 0.8504 - 稀疏分類準確度: 0.6631



1837/Unknown 822秒 447毫秒/步 - 損失: 0.8503 - 稀疏分類準確度: 0.6631



1838/Unknown 823秒 447毫秒/步 - 損失: 0.8502 - 稀疏分類準確度: 0.6631



1839/Unknown 823秒 447毫秒/步 - 損失: 0.8501 - 稀疏分類準確度: 0.6632



1840/Unknown 823秒 447毫秒/步 - 損失: 0.8500 - 稀疏分類準確度: 0.6632



1841/Unknown 824秒 447毫秒/步 - 損失: 0.8500 - 稀疏分類準確度: 0.6632



1842/Unknown 824秒 447毫秒/步 - 損失: 0.8499 - 稀疏分類準確度: 0.6633



1843/Unknown 825秒 447毫秒/步 - 損失: 0.8498 - 稀疏分類準確度: 0.6633



1844/Unknown 825秒 447毫秒/步 - 損失: 0.8497 - 稀疏分類準確度: 0.6633



1845/Unknown 825秒 447毫秒/步 - 損失: 0.8496 - 稀疏分類準確度: 0.6633



1846/Unknown 826秒 447毫秒/步 - 損失: 0.8495 - 稀疏分類準確度: 0.6634



1847/Unknown 826秒 447毫秒/步 - 損失: 0.8494 - 稀疏分類準確度: 0.6634



1848/Unknown 827秒 447毫秒/步 - 損失: 0.8494 - 稀疏分類準確度: 0.6634



1849/Unknown 827秒 447毫秒/步 - 損失: 0.8493 - 稀疏分類準確度: 0.6634



1850/Unknown 828秒 447毫秒/步 - 損失: 0.8492 - 稀疏分類準確度: 0.6635



1851/Unknown 828秒 447毫秒/步 - 損失: 0.8491 - 稀疏分類準確度: 0.6635



1852/Unknown 828秒 447毫秒/步 - 損失: 0.8490 - 稀疏分類準確度: 0.6635



1853/Unknown 829秒 447毫秒/步 - 損失: 0.8489 - 稀疏分類準確度: 0.6636



1854/Unknown 829秒 447毫秒/步 - 損失: 0.8488 - 稀疏分類準確度: 0.6636



1855/Unknown 830秒 447毫秒/步 - 損失: 0.8488 - 稀疏分類準確度: 0.6636



1856/Unknown 830秒 447毫秒/步 - 損失: 0.8487 - 稀疏分類準確度: 0.6636



1857/Unknown 830秒 447毫秒/步 - 損失: 0.8486 - 稀疏分類準確度: 0.6637



1858/Unknown 831秒 447毫秒/步 - 損失: 0.8485 - 稀疏分類準確度: 0.6637



1859/Unknown 831秒 447毫秒/步 - 損失: 0.8484 - 稀疏分類準確度: 0.6637



1860/Unknown 832秒 447毫秒/步 - 損失: 0.8483 - 稀疏分類準確度: 0.6637



1861/Unknown 832秒 447毫秒/步 - 損失: 0.8482 - 稀疏分類準確度: 0.6638



1862/Unknown 832秒 447毫秒/步 - 損失: 0.8482 - 稀疏分類準確度: 0.6638



1863/Unknown 833秒 447毫秒/步 - 損失: 0.8481 - 稀疏分類準確度: 0.6638



1864/Unknown 833秒 447毫秒/步 - 損失: 0.8480 - 稀疏分類準確度: 0.6638



1865/Unknown 834秒 447毫秒/步 - 損失: 0.8479 - 稀疏分類準確度: 0.6639



1865/1865 ━━━━━━━━━━━━━━━━━━━━ 834秒 447毫秒/步 - 損失: 0.8478 - 稀疏分類準確度: 0.6639

Model training finished

/home/humbulani/tensorflow-env/env/lib/python3.11/site-packages/keras/src/trainers/epoch_iterator.py:151: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.
  self._interrupted_warning()

Test accuracy: 75.0%

深度與交叉模型達到約 81% 的測試準確度。


結論

您可以使用 Keras 預處理層輕鬆處理具有不同編碼機制的類別特徵,包括獨熱編碼和特徵嵌入。此外,不同的模型架構(例如寬、深和交叉網路)在不同的資料集屬性方面具有不同的優勢。您可以探索獨立使用它們或將它們組合起來,以為您的資料集實現最佳結果。