RobertaTextClassifier
類別keras_hub.models.RobertaTextClassifier(
backbone,
num_classes,
preprocessor=None,
activation=None,
hidden_dim=None,
dropout=0.0,
**kwargs
)
一個用於分類任務的端到端 RoBERTa 模型。
此模型將一個分類頭連接到 keras_hub.model.RobertaBackbone
實例,從骨幹網路的輸出映射到適用於分類任務的 logits。若要使用預訓練權重,請參閱 from_preset()
建構子。
此模型可以選擇性地配置 preprocessor
層,在這種情況下,它會在 fit()
、predict()
和 evaluate()
期間自動將預處理應用於原始輸入。使用 from_preset()
建立模型時,預設會執行此操作。
免責聲明:預訓練模型以「現狀」基礎提供,不附帶任何形式的保證或條件。底層模型由第三方提供,並受獨立授權條款約束,詳情請參閱此處。
引數
keras_hub.models.RobertaBackbone
實例。keras_hub.models.RobertaTextClassifierPreprocessor
或 None
。如果為 None
,此模型將不會應用預處理,並且輸入應在呼叫模型之前進行預處理。str
或可呼叫物件。要在模型輸出上使用的啟動函數。設定 activation="softmax"
以傳回輸出機率。預設為 None
。範例
原始字串資料。
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_hub.models.RobertaTextClassifier.from_preset(
"roberta_base_en",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
預處理後的整數資料。
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_hub.models.RobertaTextClassifier.from_preset(
"roberta_base_en",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
自訂骨幹網路和詞彙表。
features = ["a quick fox", "a fox quick"]
labels = [0, 3]
vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3}
vocab = {**vocab, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_hub.models.RobertaTokenizer(
vocabulary=vocab,
merges=merges
)
preprocessor = keras_hub.models.RobertaTextClassifierPreprocessor(
tokenizer=tokenizer,
sequence_length=128,
)
backbone = keras_hub.models.RobertaBackbone(
vocabulary_size=20,
num_layers=4,
num_heads=4,
hidden_dim=256,
intermediate_dim=512,
max_sequence_length=128
)
classifier = keras_hub.models.RobertaTextClassifier(
backbone=backbone,
preprocessor=preprocessor,
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
from_preset
方法RobertaTextClassifier.from_preset(preset, load_weights=True, **kwargs)
從模型預設實例化 keras_hub.models.Task
。
預設是一個組態、權重和其他檔案資產的目錄,用於儲存和載入預訓練模型。preset
可以作為以下其中一種傳遞
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
對於任何 Task
子類別,您可以執行 cls.presets.keys()
以列出該類別上所有可用的內建預設。
此建構子可以透過兩種方式之一呼叫。可以從任務特定的基底類別呼叫,例如 keras_hub.models.CausalLM.from_preset()
,或從模型類別呼叫,例如 keras_hub.models.BertTextClassifier.from_preset()
。如果從基底類別呼叫,則傳回物件的子類別將從預設目錄中的組態推斷。
引數
True
,則儲存的權重將載入到模型架構中。如果為 False
,則所有權重都將隨機初始化。範例
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
預設 | 參數 | 描述 |
---|---|---|
roberta_base_en | 124.05M | 12 層 RoBERTa 模型,其中保留大小寫。在英文維基百科、BooksCorpus、CommonCraw 和 OpenWebText 上訓練。 |
roberta_large_en | 354.31M | 24 層 RoBERTa 模型,其中保留大小寫。在英文維基百科、BooksCorpus、CommonCraw 和 OpenWebText 上訓練。 |
xlm_roberta_base_multi | 277.45M | 12 層 XLM-RoBERTa 模型,其中保留大小寫。在 100 種語言的 CommonCrawl 上訓練。 |
xlm_roberta_large_multi | 558.84M | 24 層 XLM-RoBERTa 模型,其中保留大小寫。在 100 種語言的 CommonCrawl 上訓練。 |
backbone
屬性keras_hub.models.RobertaTextClassifier.backbone
具有核心架構的 keras_hub.models.Backbone
模型。
preprocessor
屬性keras_hub.models.RobertaTextClassifier.preprocessor
用於預處理輸入的 keras_hub.models.Preprocessor
層。