AveragePooling1D
類別tf_keras.layers.AveragePooling1D(
pool_size=2, strides=None, padding="valid", data_format="channels_last", **kwargs
)
用於時間序列資料的平均池化。
透過在 pool_size
定義的視窗上取平均值來對輸入表示進行降採樣。視窗會依 strides
移動。當使用 "valid" 填充選項時,產生的輸出形狀為:output_shape = (input_shape - pool_size + 1) / strides)
當使用 "same" 填充選項時,產生的輸出形狀為:output_shape = input_shape / strides
例如,當 strides=1 且 padding="valid"
>>> x = tf.constant([1., 2., 3., 4., 5.])
>>> x = tf.reshape(x, [1, 5, 1])
>>> x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
>>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding='valid')
>>> avg_pool_1d(x)
<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=
array([[[1.5],
[2.5],
[3.5],
[4.5]]], dtype=float32)>
例如,當 strides=2 且 padding="valid"
>>> x = tf.constant([1., 2., 3., 4., 5.])
>>> x = tf.reshape(x, [1, 5, 1])
>>> x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
>>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
... strides=2, padding='valid')
>>> avg_pool_1d(x)
<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=
array([[[1.5],
[3.5]]], dtype=float32)>
例如,當 strides=1 且 padding="same"
>>> x = tf.constant([1., 2., 3., 4., 5.])
>>> x = tf.reshape(x, [1, 5, 1])
>>> x
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.],
[2.],
[3.],
[4.],
[5.]], dtype=float32)>
>>> avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding='same')
>>> avg_pool_1d(x)
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[1.5],
[2.5],
[3.5],
[4.5],
[5.]]], dtype=float32)>
參數
pool_size
。"valid"
或 "same"
其中之一(不區分大小寫)。"valid"
表示不填充。"same"
會在輸入的左/右或上/下均勻填充,使輸出具有與輸入相同的高度/寬度尺寸。channels_last
(預設)或 channels_first
其中之一。輸入中維度的順序。channels_last
對應的輸入形狀為 (batch, steps, features)
,而 channels_first
對應的輸入形狀為 (batch, features, steps)
。輸入形狀
data_format='channels_last'
:3D 張量,形狀為 (batch_size, steps, features)
。data_format='channels_first'
:3D 張量,形狀為 (batch_size, features, steps)
。輸出形狀
data_format='channels_last'
:3D 張量,形狀為 (batch_size, downsampled_steps, features)
。data_format='channels_first'
:3D 張量,形狀為 (batch_size, features, downsampled_steps)
。