程式碼範例 / 自然語言處理 / 使用 BERT 進行文本提取

使用 BERT 進行文本提取

作者: Apoorv Nandan
創建日期 2020/05/23
最後修改日期 2020/05/23

ⓘ 此範例使用 Keras 2

在 Colab 中檢視 GitHub 原始碼

描述: 在 SQuAD 上微調來自 HuggingFace Transformers 的預訓練 BERT。


簡介

此演示使用 SQuAD(史丹佛問答數據集)。在 SQuAD 中,輸入包含一個問題和一段作為背景的段落。目標是在段落中找到回答問題的文本跨度。我們使用「完全匹配」指標評估我們在此數據上的表現,該指標衡量與任何一個真實答案完全匹配的預測百分比。

我們按如下方式微調 BERT 模型來執行此任務

  1. 將背景和問題作為輸入提供給 BERT。
  2. 取兩個向量 S 和 T,其維度等於 BERT 中隱藏狀態的維度。
  3. 計算每個標記作為答案跨度的開始和結束的機率。標記作為答案開始的機率由 S 與 BERT 最後一層中標記的表示之間的點積得出,後接所有標記上的 softmax。標記作為答案結束的機率以類似的方式使用向量 T 計算。
  4. 微調 BERT 並同時學習 S 和 T。

參考文獻

設定

import os
import re
import json
import string
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tokenizers import BertWordPieceTokenizer
from transformers import BertTokenizer, TFBertModel, BertConfig

max_len = 384
configuration = BertConfig()  # default parameters and configuration for BERT

設定 BERT 分詞器

# Save the slow pretrained tokenizer
slow_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
save_path = "bert_base_uncased/"
if not os.path.exists(save_path):
    os.makedirs(save_path)
slow_tokenizer.save_pretrained(save_path)

# Load the fast tokenizer from saved file
tokenizer = BertWordPieceTokenizer("bert_base_uncased/vocab.txt", lowercase=True)

載入資料

train_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json"
train_path = keras.utils.get_file("train.json", train_data_url)
eval_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json"
eval_path = keras.utils.get_file("eval.json", eval_data_url)

預處理資料

  1. 遍歷 JSON 檔案,並將每個記錄儲存為 SquadExample 物件。
  2. 遍歷每個 SquadExample,並建立 x_train、y_train、x_eval、y_eval
class SquadExample:
    def __init__(self, question, context, start_char_idx, answer_text, all_answers):
        self.question = question
        self.context = context
        self.start_char_idx = start_char_idx
        self.answer_text = answer_text
        self.all_answers = all_answers
        self.skip = False

    def preprocess(self):
        context = self.context
        question = self.question
        answer_text = self.answer_text
        start_char_idx = self.start_char_idx

        # Clean context, answer and question
        context = " ".join(str(context).split())
        question = " ".join(str(question).split())
        answer = " ".join(str(answer_text).split())

        # Find end character index of answer in context
        end_char_idx = start_char_idx + len(answer)
        if end_char_idx >= len(context):
            self.skip = True
            return

        # Mark the character indexes in context that are in answer
        is_char_in_ans = [0] * len(context)
        for idx in range(start_char_idx, end_char_idx):
            is_char_in_ans[idx] = 1

        # Tokenize context
        tokenized_context = tokenizer.encode(context)

        # Find tokens that were created from answer characters
        ans_token_idx = []
        for idx, (start, end) in enumerate(tokenized_context.offsets):
            if sum(is_char_in_ans[start:end]) > 0:
                ans_token_idx.append(idx)

        if len(ans_token_idx) == 0:
            self.skip = True
            return

        # Find start and end token index for tokens from answer
        start_token_idx = ans_token_idx[0]
        end_token_idx = ans_token_idx[-1]

        # Tokenize question
        tokenized_question = tokenizer.encode(question)

        # Create inputs
        input_ids = tokenized_context.ids + tokenized_question.ids[1:]
        token_type_ids = [0] * len(tokenized_context.ids) + [1] * len(
            tokenized_question.ids[1:]
        )
        attention_mask = [1] * len(input_ids)

        # Pad and create attention masks.
        # Skip if truncation is needed
        padding_length = max_len - len(input_ids)
        if padding_length > 0:  # pad
            input_ids = input_ids + ([0] * padding_length)
            attention_mask = attention_mask + ([0] * padding_length)
            token_type_ids = token_type_ids + ([0] * padding_length)
        elif padding_length < 0:  # skip
            self.skip = True
            return

        self.input_ids = input_ids
        self.token_type_ids = token_type_ids
        self.attention_mask = attention_mask
        self.start_token_idx = start_token_idx
        self.end_token_idx = end_token_idx
        self.context_token_to_char = tokenized_context.offsets


with open(train_path) as f:
    raw_train_data = json.load(f)

with open(eval_path) as f:
    raw_eval_data = json.load(f)


def create_squad_examples(raw_data):
    squad_examples = []
    for item in raw_data["data"]:
        for para in item["paragraphs"]:
            context = para["context"]
            for qa in para["qas"]:
                question = qa["question"]
                answer_text = qa["answers"][0]["text"]
                all_answers = [_["text"] for _ in qa["answers"]]
                start_char_idx = qa["answers"][0]["answer_start"]
                squad_eg = SquadExample(
                    question, context, start_char_idx, answer_text, all_answers
                )
                squad_eg.preprocess()
                squad_examples.append(squad_eg)
    return squad_examples


def create_inputs_targets(squad_examples):
    dataset_dict = {
        "input_ids": [],
        "token_type_ids": [],
        "attention_mask": [],
        "start_token_idx": [],
        "end_token_idx": [],
    }
    for item in squad_examples:
        if item.skip == False:
            for key in dataset_dict:
                dataset_dict[key].append(getattr(item, key))
    for key in dataset_dict:
        dataset_dict[key] = np.array(dataset_dict[key])

    x = [
        dataset_dict["input_ids"],
        dataset_dict["token_type_ids"],
        dataset_dict["attention_mask"],
    ]
    y = [dataset_dict["start_token_idx"], dataset_dict["end_token_idx"]]
    return x, y


train_squad_examples = create_squad_examples(raw_train_data)
x_train, y_train = create_inputs_targets(train_squad_examples)
print(f"{len(train_squad_examples)} training points created.")

eval_squad_examples = create_squad_examples(raw_eval_data)
x_eval, y_eval = create_inputs_targets(eval_squad_examples)
print(f"{len(eval_squad_examples)} evaluation points created.")
87599 training points created.
10570 evaluation points created.

使用 BERT 和 Functional API 建立問答模型

def create_model():
    ## BERT encoder
    encoder = TFBertModel.from_pretrained("bert-base-uncased")

    ## QA Model
    input_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
    token_type_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
    attention_mask = layers.Input(shape=(max_len,), dtype=tf.int32)
    embedding = encoder(
        input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask
    )[0]

    start_logits = layers.Dense(1, name="start_logit", use_bias=False)(embedding)
    start_logits = layers.Flatten()(start_logits)

    end_logits = layers.Dense(1, name="end_logit", use_bias=False)(embedding)
    end_logits = layers.Flatten()(end_logits)

    start_probs = layers.Activation(keras.activations.softmax)(start_logits)
    end_probs = layers.Activation(keras.activations.softmax)(end_logits)

    model = keras.Model(
        inputs=[input_ids, token_type_ids, attention_mask],
        outputs=[start_probs, end_probs],
    )
    loss = keras.losses.SparseCategoricalCrossentropy(from_logits=False)
    optimizer = keras.optimizers.Adam(lr=5e-5)
    model.compile(optimizer=optimizer, loss=[loss, loss])
    return model

此程式碼最好在 Google Colab TPU 執行階段執行。使用 Colab TPU,每個 epoch 將需要 5-6 分鐘。

use_tpu = True
if use_tpu:
    # Create distribution strategy
    tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
    strategy = tf.distribute.TPUStrategy(tpu)

    # Create model
    with strategy.scope():
        model = create_model()
else:
    model = create_model()

model.summary()
INFO:absl:Entering into master device scope: /job:worker/replica:0/task:0/device:CPU:0

INFO:tensorflow:Initializing the TPU system: grpc://10.48.159.170:8470

INFO:tensorflow:Clearing out eager caches

INFO:tensorflow:Finished initializing TPU system.

INFO:tensorflow:Found TPU system:

INFO:tensorflow:*** Num TPU Cores: 8

INFO:tensorflow:*** Num TPU Workers: 1

INFO:tensorflow:*** Num TPU Cores Per Worker: 8

Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 384)]        0                                            
__________________________________________________________________________________________________
input_3 (InputLayer)            [(None, 384)]        0                                            
__________________________________________________________________________________________________
input_2 (InputLayer)            [(None, 384)]        0                                            
__________________________________________________________________________________________________
tf_bert_model (TFBertModel)     ((None, 384, 768), ( 109482240   input_1[0][0]                    
__________________________________________________________________________________________________
start_logit (Dense)             (None, 384, 1)       768         tf_bert_model[0][0]              
__________________________________________________________________________________________________
end_logit (Dense)               (None, 384, 1)       768         tf_bert_model[0][0]              
__________________________________________________________________________________________________
flatten (Flatten)               (None, 384)          0           start_logit[0][0]                
__________________________________________________________________________________________________
flatten_1 (Flatten)             (None, 384)          0           end_logit[0][0]                  
__________________________________________________________________________________________________
activation_7 (Activation)       (None, 384)          0           flatten[0][0]                    
__________________________________________________________________________________________________
activation_8 (Activation)       (None, 384)          0           flatten_1[0][0]                  
==================================================================================================
Total params: 109,483,776
Trainable params: 109,483,776
Non-trainable params: 0
__________________________________________________________________________________________________

建立評估回呼

此回呼將在每個 epoch 後使用驗證資料計算完全匹配分數。

def normalize_text(text):
    text = text.lower()

    # Remove punctuations
    exclude = set(string.punctuation)
    text = "".join(ch for ch in text if ch not in exclude)

    # Remove articles
    regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
    text = re.sub(regex, " ", text)

    # Remove extra white space
    text = " ".join(text.split())
    return text


class ExactMatch(keras.callbacks.Callback):
    """
    Each `SquadExample` object contains the character level offsets for each token
    in its input paragraph. We use them to get back the span of text corresponding
    to the tokens between our predicted start and end tokens.
    All the ground-truth answers are also present in each `SquadExample` object.
    We calculate the percentage of data points where the span of text obtained
    from model predictions matches one of the ground-truth answers.
    """

    def __init__(self, x_eval, y_eval):
        self.x_eval = x_eval
        self.y_eval = y_eval

    def on_epoch_end(self, epoch, logs=None):
        pred_start, pred_end = self.model.predict(self.x_eval)
        count = 0
        eval_examples_no_skip = [_ for _ in eval_squad_examples if _.skip == False]
        for idx, (start, end) in enumerate(zip(pred_start, pred_end)):
            squad_eg = eval_examples_no_skip[idx]
            offsets = squad_eg.context_token_to_char
            start = np.argmax(start)
            end = np.argmax(end)
            if start >= len(offsets):
                continue
            pred_char_start = offsets[start][0]
            if end < len(offsets):
                pred_char_end = offsets[end][1]
                pred_ans = squad_eg.context[pred_char_start:pred_char_end]
            else:
                pred_ans = squad_eg.context[pred_char_start:]

            normalized_pred_ans = normalize_text(pred_ans)
            normalized_true_ans = [normalize_text(_) for _ in squad_eg.all_answers]
            if normalized_pred_ans in normalized_true_ans:
                count += 1
        acc = count / len(self.y_eval[0])
        print(f"\nepoch={epoch+1}, exact match score={acc:.2f}")

訓練和評估

exact_match_callback = ExactMatch(x_eval, y_eval)
model.fit(
    x_train,
    y_train,
    epochs=1,  # For demonstration, 3 epochs are recommended
    verbose=2,
    batch_size=64,
    callbacks=[exact_match_callback],
)
epoch=1, exact match score=0.78
1346/1346 - 350s - activation_7_loss: 1.3488 - loss: 2.5905 - activation_8_loss: 1.2417

<tensorflow.python.keras.callbacks.History at 0x7fc78b4458d0>