程式碼範例 / 電腦視覺 / 使用積分梯度進行模型可解釋性分析

使用積分梯度進行模型可解釋性分析

作者: A_K_Nain
建立日期 2020/06/02
上次修改日期 2020/06/02
說明: 如何取得分類模型的積分梯度。

ⓘ 此範例使用 Keras 3

在 Colab 中檢視 GitHub 來源


積分梯度

積分梯度是一種將分類模型的預測歸因於其輸入特徵的技術。這是一種模型可解釋性技術:您可以使用它來視覺化輸入特徵與模型預測之間的關係。

積分梯度是計算預測輸出相對於輸入特徵的梯度的一種變體。若要計算積分梯度,我們需要執行下列步驟:

  1. 識別輸入和輸出。在我們的案例中,輸入是影像,輸出是我們模型的最後一層 (具有 softmax 啟動的密集層)。

  2. 計算在特定資料點上進行預測時,哪些特徵對神經網路很重要。若要識別這些特徵,我們需要選擇基準輸入。基準輸入可以是黑色影像 (所有像素值都設定為零) 或隨機雜訊。基準輸入的形狀必須與我們的輸入影像相同,例如 (299, 299, 3)。

  3. 針對給定的步驟數插補基準。步驟數表示在給定輸入影像的梯度近似中我們需要的步驟。步驟數是超參數。作者建議使用 20 到 1000 個步驟之間的任何值。

  4. 預先處理這些插補影像並進行前向傳遞。

  5. 取得這些插補影像的梯度。
  6. 使用梯形法則近似梯度積分。

若要深入了解積分梯度及其方法原理,請考慮閱讀這篇出色的文章

參考資料


設定

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
from IPython.display import Image, display

import tensorflow as tf
import keras
from keras import layers
from keras.applications import xception


# Size of the input image
img_size = (299, 299, 3)

# Load Xception model with imagenet weights
model = xception.Xception(weights="imagenet")

# The local path to our target image
img_path = keras.utils.get_file("elephant.jpg", "https://i.imgur.com/Bvro0YD.png")
display(Image(img_path))

jpeg


積分梯度演算法

def get_img_array(img_path, size=(299, 299)):
    # `img` is a PIL image of size 299x299
    img = keras.utils.load_img(img_path, target_size=size)
    # `array` is a float32 Numpy array of shape (299, 299, 3)
    array = keras.utils.img_to_array(img)
    # We add a dimension to transform our array into a "batch"
    # of size (1, 299, 299, 3)
    array = np.expand_dims(array, axis=0)
    return array


def get_gradients(img_input, top_pred_idx):
    """Computes the gradients of outputs w.r.t input image.

    Args:
        img_input: 4D image tensor
        top_pred_idx: Predicted label for the input image

    Returns:
        Gradients of the predictions w.r.t img_input
    """
    images = tf.cast(img_input, tf.float32)

    with tf.GradientTape() as tape:
        tape.watch(images)
        preds = model(images)
        top_class = preds[:, top_pred_idx]

    grads = tape.gradient(top_class, images)
    return grads


def get_integrated_gradients(img_input, top_pred_idx, baseline=None, num_steps=50):
    """Computes Integrated Gradients for a predicted label.

    Args:
        img_input (ndarray): Original image
        top_pred_idx: Predicted label for the input image
        baseline (ndarray): The baseline image to start with for interpolation
        num_steps: Number of interpolation steps between the baseline
            and the input used in the computation of integrated gradients. These
            steps along determine the integral approximation error. By default,
            num_steps is set to 50.

    Returns:
        Integrated gradients w.r.t input image
    """
    # If baseline is not provided, start with a black image
    # having same size as the input image.
    if baseline is None:
        baseline = np.zeros(img_size).astype(np.float32)
    else:
        baseline = baseline.astype(np.float32)

    # 1. Do interpolation.
    img_input = img_input.astype(np.float32)
    interpolated_image = [
        baseline + (step / num_steps) * (img_input - baseline)
        for step in range(num_steps + 1)
    ]
    interpolated_image = np.array(interpolated_image).astype(np.float32)

    # 2. Preprocess the interpolated images
    interpolated_image = xception.preprocess_input(interpolated_image)

    # 3. Get the gradients
    grads = []
    for i, img in enumerate(interpolated_image):
        img = tf.expand_dims(img, axis=0)
        grad = get_gradients(img, top_pred_idx=top_pred_idx)
        grads.append(grad[0])
    grads = tf.convert_to_tensor(grads, dtype=tf.float32)

    # 4. Approximate the integral using the trapezoidal rule
    grads = (grads[:-1] + grads[1:]) / 2.0
    avg_grads = tf.reduce_mean(grads, axis=0)

    # 5. Calculate integrated gradients and return
    integrated_grads = (img_input - baseline) * avg_grads
    return integrated_grads


def random_baseline_integrated_gradients(
    img_input, top_pred_idx, num_steps=50, num_runs=2
):
    """Generates a number of random baseline images.

    Args:
        img_input (ndarray): 3D image
        top_pred_idx: Predicted label for the input image
        num_steps: Number of interpolation steps between the baseline
            and the input used in the computation of integrated gradients. These
            steps along determine the integral approximation error. By default,
            num_steps is set to 50.
        num_runs: number of baseline images to generate

    Returns:
        Averaged integrated gradients for `num_runs` baseline images
    """
    # 1. List to keep track of Integrated Gradients (IG) for all the images
    integrated_grads = []

    # 2. Get the integrated gradients for all the baselines
    for run in range(num_runs):
        baseline = np.random.random(img_size) * 255
        igrads = get_integrated_gradients(
            img_input=img_input,
            top_pred_idx=top_pred_idx,
            baseline=baseline,
            num_steps=num_steps,
        )
        integrated_grads.append(igrads)

    # 3. Return the average integrated gradients for the image
    integrated_grads = tf.convert_to_tensor(integrated_grads)
    return tf.reduce_mean(integrated_grads, axis=0)

用於視覺化梯度和積分梯度的輔助類別

class GradVisualizer:
    """Plot gradients of the outputs w.r.t an input image."""

    def __init__(self, positive_channel=None, negative_channel=None):
        if positive_channel is None:
            self.positive_channel = [0, 255, 0]
        else:
            self.positive_channel = positive_channel

        if negative_channel is None:
            self.negative_channel = [255, 0, 0]
        else:
            self.negative_channel = negative_channel

    def apply_polarity(self, attributions, polarity):
        if polarity == "positive":
            return np.clip(attributions, 0, 1)
        else:
            return np.clip(attributions, -1, 0)

    def apply_linear_transformation(
        self,
        attributions,
        clip_above_percentile=99.9,
        clip_below_percentile=70.0,
        lower_end=0.2,
    ):
        # 1. Get the thresholds
        m = self.get_thresholded_attributions(
            attributions, percentage=100 - clip_above_percentile
        )
        e = self.get_thresholded_attributions(
            attributions, percentage=100 - clip_below_percentile
        )

        # 2. Transform the attributions by a linear function f(x) = a*x + b such that
        # f(m) = 1.0 and f(e) = lower_end
        transformed_attributions = (1 - lower_end) * (np.abs(attributions) - e) / (
            m - e
        ) + lower_end

        # 3. Make sure that the sign of transformed attributions is the same as original attributions
        transformed_attributions *= np.sign(attributions)

        # 4. Only keep values that are bigger than the lower_end
        transformed_attributions *= transformed_attributions >= lower_end

        # 5. Clip values and return
        transformed_attributions = np.clip(transformed_attributions, 0.0, 1.0)
        return transformed_attributions

    def get_thresholded_attributions(self, attributions, percentage):
        if percentage == 100.0:
            return np.min(attributions)

        # 1. Flatten the attributions
        flatten_attr = attributions.flatten()

        # 2. Get the sum of the attributions
        total = np.sum(flatten_attr)

        # 3. Sort the attributions from largest to smallest.
        sorted_attributions = np.sort(np.abs(flatten_attr))[::-1]

        # 4. Calculate the percentage of the total sum that each attribution
        # and the values about it contribute.
        cum_sum = 100.0 * np.cumsum(sorted_attributions) / total

        # 5. Threshold the attributions by the percentage
        indices_to_consider = np.where(cum_sum >= percentage)[0][0]

        # 6. Select the desired attributions and return
        attributions = sorted_attributions[indices_to_consider]
        return attributions

    def binarize(self, attributions, threshold=0.001):
        return attributions > threshold

    def morphological_cleanup_fn(self, attributions, structure=np.ones((4, 4))):
        closed = ndimage.grey_closing(attributions, structure=structure)
        opened = ndimage.grey_opening(closed, structure=structure)
        return opened

    def draw_outlines(
        self,
        attributions,
        percentage=90,
        connected_component_structure=np.ones((3, 3)),
    ):
        # 1. Binarize the attributions.
        attributions = self.binarize(attributions)

        # 2. Fill the gaps
        attributions = ndimage.binary_fill_holes(attributions)

        # 3. Compute connected components
        connected_components, num_comp = ndimage.label(
            attributions, structure=connected_component_structure
        )

        # 4. Sum up the attributions for each component
        total = np.sum(attributions[connected_components > 0])
        component_sums = []
        for comp in range(1, num_comp + 1):
            mask = connected_components == comp
            component_sum = np.sum(attributions[mask])
            component_sums.append((component_sum, mask))

        # 5. Compute the percentage of top components to keep
        sorted_sums_and_masks = sorted(component_sums, key=lambda x: x[0], reverse=True)
        sorted_sums = list(zip(*sorted_sums_and_masks))[0]
        cumulative_sorted_sums = np.cumsum(sorted_sums)
        cutoff_threshold = percentage * total / 100
        cutoff_idx = np.where(cumulative_sorted_sums >= cutoff_threshold)[0][0]
        if cutoff_idx > 2:
            cutoff_idx = 2

        # 6. Set the values for the kept components
        border_mask = np.zeros_like(attributions)
        for i in range(cutoff_idx + 1):
            border_mask[sorted_sums_and_masks[i][1]] = 1

        # 7. Make the mask hollow and show only the border
        eroded_mask = ndimage.binary_erosion(border_mask, iterations=1)
        border_mask[eroded_mask] = 0

        # 8. Return the outlined mask
        return border_mask

    def process_grads(
        self,
        image,
        attributions,
        polarity="positive",
        clip_above_percentile=99.9,
        clip_below_percentile=0,
        morphological_cleanup=False,
        structure=np.ones((3, 3)),
        outlines=False,
        outlines_component_percentage=90,
        overlay=True,
    ):
        if polarity not in ["positive", "negative"]:
            raise ValueError(
                f""" Allowed polarity values: 'positive' or 'negative'
                                    but provided {polarity}"""
            )
        if clip_above_percentile < 0 or clip_above_percentile > 100:
            raise ValueError("clip_above_percentile must be in [0, 100]")

        if clip_below_percentile < 0 or clip_below_percentile > 100:
            raise ValueError("clip_below_percentile must be in [0, 100]")

        # 1. Apply polarity
        if polarity == "positive":
            attributions = self.apply_polarity(attributions, polarity=polarity)
            channel = self.positive_channel
        else:
            attributions = self.apply_polarity(attributions, polarity=polarity)
            attributions = np.abs(attributions)
            channel = self.negative_channel

        # 2. Take average over the channels
        attributions = np.average(attributions, axis=2)

        # 3. Apply linear transformation to the attributions
        attributions = self.apply_linear_transformation(
            attributions,
            clip_above_percentile=clip_above_percentile,
            clip_below_percentile=clip_below_percentile,
            lower_end=0.0,
        )

        # 4. Cleanup
        if morphological_cleanup:
            attributions = self.morphological_cleanup_fn(
                attributions, structure=structure
            )
        # 5. Draw the outlines
        if outlines:
            attributions = self.draw_outlines(
                attributions, percentage=outlines_component_percentage
            )

        # 6. Expand the channel axis and convert to RGB
        attributions = np.expand_dims(attributions, 2) * channel

        # 7.Superimpose on the original image
        if overlay:
            attributions = np.clip((attributions * 0.8 + image), 0, 255)
        return attributions

    def visualize(
        self,
        image,
        gradients,
        integrated_gradients,
        polarity="positive",
        clip_above_percentile=99.9,
        clip_below_percentile=0,
        morphological_cleanup=False,
        structure=np.ones((3, 3)),
        outlines=False,
        outlines_component_percentage=90,
        overlay=True,
        figsize=(15, 8),
    ):
        # 1. Make two copies of the original image
        img1 = np.copy(image)
        img2 = np.copy(image)

        # 2. Process the normal gradients
        grads_attr = self.process_grads(
            image=img1,
            attributions=gradients,
            polarity=polarity,
            clip_above_percentile=clip_above_percentile,
            clip_below_percentile=clip_below_percentile,
            morphological_cleanup=morphological_cleanup,
            structure=structure,
            outlines=outlines,
            outlines_component_percentage=outlines_component_percentage,
            overlay=overlay,
        )

        # 3. Process the integrated gradients
        igrads_attr = self.process_grads(
            image=img2,
            attributions=integrated_gradients,
            polarity=polarity,
            clip_above_percentile=clip_above_percentile,
            clip_below_percentile=clip_below_percentile,
            morphological_cleanup=morphological_cleanup,
            structure=structure,
            outlines=outlines,
            outlines_component_percentage=outlines_component_percentage,
            overlay=overlay,
        )

        _, ax = plt.subplots(1, 3, figsize=figsize)
        ax[0].imshow(image)
        ax[1].imshow(grads_attr.astype(np.uint8))
        ax[2].imshow(igrads_attr.astype(np.uint8))

        ax[0].set_title("Input")
        ax[1].set_title("Normal gradients")
        ax[2].set_title("Integrated gradients")
        plt.show()

讓我們來測試一下

# 1. Convert the image to numpy array
img = get_img_array(img_path)

# 2. Keep a copy of the original image
orig_img = np.copy(img[0]).astype(np.uint8)

# 3. Preprocess the image
img_processed = tf.cast(xception.preprocess_input(img), dtype=tf.float32)

# 4. Get model predictions
preds = model.predict(img_processed)
top_pred_idx = tf.argmax(preds[0])
print("Predicted:", top_pred_idx, xception.decode_predictions(preds, top=1)[0])

# 5. Get the gradients of the last layer for the predicted label
grads = get_gradients(img_processed, top_pred_idx=top_pred_idx)

# 6. Get the integrated gradients
igrads = random_baseline_integrated_gradients(
    np.copy(orig_img), top_pred_idx=top_pred_idx, num_steps=50, num_runs=2
)

# 7. Process the gradients and plot
vis = GradVisualizer()
vis.visualize(
    image=orig_img,
    gradients=grads[0].numpy(),
    integrated_gradients=igrads.numpy(),
    clip_above_percentile=99,
    clip_below_percentile=0,
)

vis.visualize(
    image=orig_img,
    gradients=grads[0].numpy(),
    integrated_gradients=igrads.numpy(),
    clip_above_percentile=95,
    clip_below_percentile=28,
    morphological_cleanup=True,
    outlines=True,
)
 1/1 ━━━━━━━━━━━━━━━━━━━━ 5s 5s/step

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699486705.534012   86541 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

Predicted: tf.Tensor(386, shape=(), dtype=int64) [('n02504458', 'African_elephant', 0.8871446)]

png

png