作者: ADMoreau
建立日期 2020/05/21
上次修改日期 2023/07/20
說明: 使用 Reptile 在 Omniglot 數據集上進行少樣本分類。
Reptile 演算法由 OpenAI 開發,用於執行模型不可知的中繼學習。具體而言,此演算法旨在透過最少的訓練(少樣本學習)快速學習執行新任務。此演算法的工作方式是使用在從未見過的數據的小批次上訓練的權重與模型權重在固定數量的中繼迭代中訓練之前的權重之間的差異來執行隨機梯度下降。
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
from keras import layers
import matplotlib.pyplot as plt
import numpy as np
import random
import tensorflow as tf
import tensorflow_datasets as tfds
learning_rate = 0.003
meta_step_size = 0.25
inner_batch_size = 25
eval_batch_size = 25
meta_iters = 2000
eval_iters = 5
inner_iters = 4
eval_interval = 1
train_shots = 20
shots = 5
classes = 5
Omniglot 數據集是一個包含 50 種不同字母的 1,623 個字符的數據集,每個字符有 20 個範例。每個字符的 20 個樣本都是透過 Amazon 的 Mechanical Turk 線上繪製的。對於少樣本學習任務,從隨機選擇的 n
個類別中隨機抽取 k
個樣本(或「快照」)。這些 n
個數值用於建立一組新的臨時標籤,以測試模型在給出少量範例的情況下學習新任務的能力。換句話說,如果您正在訓練 5 個類別,則您的新類別標籤將為 0、1、2、3 或 4。Omniglot 是此任務的絕佳數據集,因為有許多不同的類別可供選擇,並且每個類別都有合理的樣本數量。
class Dataset:
# This class will facilitate the creation of a few-shot dataset
# from the Omniglot dataset that can be sampled from quickly while also
# allowing to create new labels at the same time.
def __init__(self, training):
# Download the tfrecord files containing the omniglot data and convert to a
# dataset.
split = "train" if training else "test"
ds = tfds.load("omniglot", split=split, as_supervised=True, shuffle_files=False)
# Iterate over the dataset to get each individual image and its class,
# and put that data into a dictionary.
self.data = {}
def extraction(image, label):
# This function will shrink the Omniglot images to the desired size,
# scale pixel values and convert the RGB image to grayscale
image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.rgb_to_grayscale(image)
image = tf.image.resize(image, [28, 28])
return image, label
for image, label in ds.map(extraction):
image = image.numpy()
label = str(label.numpy())
if label not in self.data:
self.data[label] = []
self.data[label].append(image)
self.labels = list(self.data.keys())
def get_mini_dataset(
self, batch_size, repetitions, shots, num_classes, split=False
):
temp_labels = np.zeros(shape=(num_classes * shots))
temp_images = np.zeros(shape=(num_classes * shots, 28, 28, 1))
if split:
test_labels = np.zeros(shape=(num_classes))
test_images = np.zeros(shape=(num_classes, 28, 28, 1))
# Get a random subset of labels from the entire label set.
label_subset = random.choices(self.labels, k=num_classes)
for class_idx, class_obj in enumerate(label_subset):
# Use enumerated index value as a temporary label for mini-batch in
# few shot learning.
temp_labels[class_idx * shots : (class_idx + 1) * shots] = class_idx
# If creating a split dataset for testing, select an extra sample from each
# label to create the test dataset.
if split:
test_labels[class_idx] = class_idx
images_to_split = random.choices(
self.data[label_subset[class_idx]], k=shots + 1
)
test_images[class_idx] = images_to_split[-1]
temp_images[
class_idx * shots : (class_idx + 1) * shots
] = images_to_split[:-1]
else:
# For each index in the randomly selected label_subset, sample the
# necessary number of images.
temp_images[
class_idx * shots : (class_idx + 1) * shots
] = random.choices(self.data[label_subset[class_idx]], k=shots)
dataset = tf.data.Dataset.from_tensor_slices(
(temp_images.astype(np.float32), temp_labels.astype(np.int32))
)
dataset = dataset.shuffle(100).batch(batch_size).repeat(repetitions)
if split:
return dataset, test_images, test_labels
return dataset
import urllib3
urllib3.disable_warnings() # Disable SSL warnings that may happen during download.
train_dataset = Dataset(training=True)
test_dataset = Dataset(training=False)
Downloading and preparing dataset 17.95 MiB (download: 17.95 MiB, generated: Unknown size, total: 17.95 MiB) to /home/fchollet/tensorflow_datasets/omniglot/3.0.0...
Dl Completed...: 0 url [00:00, ? url/s]
Dl Size...: 0 MiB [00:00, ? MiB/s]
Extraction completed...: 0 file [00:00, ? file/s]
Generating splits...: 0%| | 0/4 [00:00<?, ? splits/s]
Generating train examples...: 0%| | 0/19280 [00:00<?, ? examples/s]
Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-train.tfrecord*...: 0%…
Generating test examples...: 0%| | 0/13180 [00:00<?, ? examples/s]
Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-test.tfrecord*...: 0%|…
Generating small1 examples...: 0%| | 0/2720 [00:00<?, ? examples/s]
Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-small1.tfrecord*...: 0…
Generating small2 examples...: 0%| | 0/3120 [00:00<?, ? examples/s]
Shuffling /home/fchollet/tensorflow_datasets/omniglot/3.0.0.incomplete1MPXME/omniglot-small2.tfrecord*...: 0…
Dataset omniglot downloaded and prepared to /home/fchollet/tensorflow_datasets/omniglot/3.0.0. Subsequent calls will reuse this data.
_, axarr = plt.subplots(nrows=5, ncols=5, figsize=(20, 20))
sample_keys = list(train_dataset.data.keys())
for a in range(5):
for b in range(5):
temp_image = train_dataset.data[sample_keys[a]][b]
temp_image = np.stack((temp_image[:, :, 0],) * 3, axis=2)
temp_image *= 255
temp_image = np.clip(temp_image, 0, 255).astype("uint8")
if b == 2:
axarr[a, b].set_title("Class : " + sample_keys[a])
axarr[a, b].imshow(temp_image, cmap="gray")
axarr[a, b].xaxis.set_visible(False)
axarr[a, b].yaxis.set_visible(False)
plt.show()
def conv_bn(x):
x = layers.Conv2D(filters=64, kernel_size=3, strides=2, padding="same")(x)
x = layers.BatchNormalization()(x)
return layers.ReLU()(x)
inputs = layers.Input(shape=(28, 28, 1))
x = conv_bn(inputs)
x = conv_bn(x)
x = conv_bn(x)
x = conv_bn(x)
x = layers.Flatten()(x)
outputs = layers.Dense(classes, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile()
optimizer = keras.optimizers.SGD(learning_rate=learning_rate)
training = []
testing = []
for meta_iter in range(meta_iters):
frac_done = meta_iter / meta_iters
cur_meta_step_size = (1 - frac_done) * meta_step_size
# Temporarily save the weights from the model.
old_vars = model.get_weights()
# Get a sample from the full dataset.
mini_dataset = train_dataset.get_mini_dataset(
inner_batch_size, inner_iters, train_shots, classes
)
for images, labels in mini_dataset:
with tf.GradientTape() as tape:
preds = model(images)
loss = keras.losses.sparse_categorical_crossentropy(labels, preds)
grads = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
new_vars = model.get_weights()
# Perform SGD for the meta step.
for var in range(len(new_vars)):
new_vars[var] = old_vars[var] + (
(new_vars[var] - old_vars[var]) * cur_meta_step_size
)
# After the meta-learning step, reload the newly-trained weights into the model.
model.set_weights(new_vars)
# Evaluation loop
if meta_iter % eval_interval == 0:
accuracies = []
for dataset in (train_dataset, test_dataset):
# Sample a mini dataset from the full dataset.
train_set, test_images, test_labels = dataset.get_mini_dataset(
eval_batch_size, eval_iters, shots, classes, split=True
)
old_vars = model.get_weights()
# Train on the samples and get the resulting accuracies.
for images, labels in train_set:
with tf.GradientTape() as tape:
preds = model(images)
loss = keras.losses.sparse_categorical_crossentropy(labels, preds)
grads = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
test_preds = model.predict(test_images)
test_preds = tf.argmax(test_preds).numpy()
num_correct = (test_preds == test_labels).sum()
# Reset the weights after getting the evaluation accuracies.
model.set_weights(old_vars)
accuracies.append(num_correct / classes)
training.append(accuracies[0])
testing.append(accuracies[1])
if meta_iter % 100 == 0:
print(
"batch %d: train=%f test=%f" % (meta_iter, accuracies[0], accuracies[1])
)
batch 0: train=0.600000 test=0.200000
batch 100: train=0.800000 test=0.200000
batch 200: train=1.000000 test=1.000000
batch 300: train=1.000000 test=0.800000
batch 400: train=1.000000 test=0.600000
batch 500: train=1.000000 test=1.000000
batch 600: train=1.000000 test=0.600000
batch 700: train=1.000000 test=1.000000
batch 800: train=1.000000 test=0.800000
batch 900: train=0.800000 test=0.600000
batch 1000: train=1.000000 test=0.600000
batch 1100: train=1.000000 test=1.000000
batch 1200: train=1.000000 test=1.000000
batch 1300: train=0.600000 test=1.000000
batch 1400: train=1.000000 test=0.600000
batch 1500: train=1.000000 test=1.000000
batch 1600: train=0.800000 test=1.000000
batch 1700: train=0.800000 test=1.000000
batch 1800: train=0.800000 test=1.000000
batch 1900: train=1.000000 test=1.000000
# First, some preprocessing to smooth the training and testing arrays for display.
window_length = 100
train_s = np.r_[
training[window_length - 1 : 0 : -1],
training,
training[-1:-window_length:-1],
]
test_s = np.r_[
testing[window_length - 1 : 0 : -1], testing, testing[-1:-window_length:-1]
]
w = np.hamming(window_length)
train_y = np.convolve(w / w.sum(), train_s, mode="valid")
test_y = np.convolve(w / w.sum(), test_s, mode="valid")
# Display the training accuracies.
x = np.arange(0, len(test_y), 1)
plt.plot(x, test_y, x, train_y)
plt.legend(["test", "train"])
plt.grid()
train_set, test_images, test_labels = dataset.get_mini_dataset(
eval_batch_size, eval_iters, shots, classes, split=True
)
for images, labels in train_set:
with tf.GradientTape() as tape:
preds = model(images)
loss = keras.losses.sparse_categorical_crossentropy(labels, preds)
grads = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
test_preds = model.predict(test_images)
test_preds = tf.argmax(test_preds).numpy()
_, axarr = plt.subplots(nrows=1, ncols=5, figsize=(20, 20))
sample_keys = list(train_dataset.data.keys())
for i, ax in zip(range(5), axarr):
temp_image = np.stack((test_images[i, :, :, 0],) * 3, axis=2)
temp_image *= 255
temp_image = np.clip(temp_image, 0, 255).astype("uint8")
ax.set_title(
"Label : {}, Prediction : {}".format(int(test_labels[i]), test_preds[i])
)
ax.imshow(temp_image, cmap="gray")
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
plt.show()