作者: Aritra Roy Gosthipaty、Suvaditya Mukherjee
建立日期 2023/03/12
最後修改日期 2024/11/12
描述: 使用時間潛在瓶頸網路進行影像分類。
一個簡單的遞迴神經網路 (RNN) 顯示出強烈的歸納偏誤,傾向於學習時間壓縮表示。方程式 1 顯示了遞迴公式,其中 h_t
是整個輸入序列 x
的壓縮表示(單一向量)。
![]() |
---|
方程式 1:遞迴方程式。(來源:Aritra 和 Suvaditya) |
另一方面,Transformer(Vaswani et. al)在學習時間壓縮表示方面幾乎沒有歸納偏誤。Transformer 以其成對注意力機制在自然語言處理 (NLP) 和視覺任務中取得了最先進的成果。
雖然 Transformer 能夠注意輸入序列的不同部分,但注意力的計算在本質上是二次方的。
Didolkar et. al 認為,擁有更壓縮的序列表示可能有利於泛化,因為它可以很容易地被重複使用和重新利用,而減少不相關的細節。雖然壓縮是好的,但他們也注意到,過多的壓縮會損害表達能力。
作者提出了一個將計算分為兩個流的解決方案。一個慢速流,在本質上是遞迴的;一個快速流,被參數化為 Transformer。雖然此方法具有引入不同處理流以保留和處理潛在狀態的新穎性,但它與其他工作有相似之處,例如Perceiver 機制(由 Jaegle et. al. 提出)和Grounded Language Learning Fast and Slow(由 Hill et. al. 提出)。
以下範例探討如何利用新的時間潛在瓶頸機制,對 CIFAR-10 資料集執行影像分類。我們透過自訂 RNNCell
實作來實作此模型,以製作一個高效能且向量化的設計。
import os
import keras
from keras import layers, ops, mixed_precision
from keras.optimizers import AdamW
import numpy as np
import random
from matplotlib import pyplot as plt
# Set seed for reproducibility.
keras.utils.set_random_seed(42)
我們設定了在我們設計的管線中需要的一些組態參數。目前的參數用於 CIFAR10 資料集。
該模型也支援 混合精度
設定,它會將模型量化為在可行的情況下使用 16 位元
浮點數,同時根據需要保留一些參數為 32 位元
,以確保數值穩定性。這帶來了效能上的好處,因為模型的佔用空間顯著減少,同時在推理時提高了速度。
config = {
"mixed_precision": True,
"dataset": "cifar10",
"train_slice": 40_000,
"batch_size": 2048,
"buffer_size": 2048 * 2,
"input_shape": [32, 32, 3],
"image_size": 48,
"num_classes": 10,
"learning_rate": 1e-4,
"weight_decay": 1e-4,
"epochs": 30,
"patch_size": 4,
"embed_dim": 64,
"chunk_size": 8,
"r": 2,
"num_layers": 4,
"ffn_drop": 0.2,
"attn_drop": 0.2,
"num_heads": 1,
}
if config["mixed_precision"]:
policy = mixed_precision.Policy("mixed_float16")
mixed_precision.set_global_policy(policy)
我們將使用 CIFAR10 資料集來執行我們的實驗。此資料集包含 50,000
張影像的訓練集,用於 10
個類別,標準影像大小為 (32, 32, 3)
。
它還有一組 10,000
張具有相似特徵的獨立影像。有關資料集的更多資訊,請造訪資料集的官方網站以及 keras.datasets.cifar10
API 參考。
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
(x_train, y_train), (x_val, y_val) = (
(x_train[: config["train_slice"]], y_train[: config["train_slice"]]),
(x_train[config["train_slice"] :], y_train[config["train_slice"] :]),
)
我們定義了單獨的管線,以對我們的資料執行影像擴增。此步驟對於使模型對變化更具穩健性非常重要,有助於模型更好地泛化。我們執行的預處理和擴增步驟如下
重新縮放
(訓練、測試):執行此步驟是為了將所有影像像素值從 [0,255]
範圍正規化到 [0,1)
。這有助於在稍後的訓練過程中維持數值穩定性。調整大小
(訓練、測試):我們將影像從原始大小 (32, 32) 調整為 (52, 52)。這樣做是為了配合隨機裁剪,並符合論文中給定的數據規格。RandomCrop
(訓練):此層隨機選擇影像的一個裁剪/子區域,大小為 (48, 48)
。RandomFlip
(訓練):此層隨機將所有影像水平翻轉,並保持影像大小不變。# Build the `train` augmentation pipeline.
train_augmentation = keras.Sequential(
[
layers.Rescaling(1 / 255.0, dtype="float32"),
layers.Resizing(
config["input_shape"][0] + 20,
config["input_shape"][0] + 20,
dtype="float32",
),
layers.RandomCrop(config["image_size"], config["image_size"], dtype="float32"),
layers.RandomFlip("horizontal", dtype="float32"),
],
name="train_data_augmentation",
)
# Build the `val` and `test` data pipeline.
test_augmentation = keras.Sequential(
[
layers.Rescaling(1 / 255.0, dtype="float32"),
layers.Resizing(config["image_size"], config["image_size"], dtype="float32"),
],
name="test_data_augmentation",
)
# We define functions in place of simple lambda functions to run through the
# [`keras.Sequential`](/api/models/sequential#sequential-class)in order to solve this warning:
# (https://github.com/tensorflow/tensorflow/issues/56089)
def train_map_fn(image, label):
return train_augmentation(image), label
def test_map_fn(image, label):
return test_augmentation(image), label
PyDataset
物件中np.ndarray
實例,並將其包裝在一個類別中,該類別包裝了 keras.utils.PyDataset
,並使用 keras 預處理層應用擴增。class Dataset(keras.utils.PyDataset):
def __init__(
self, x_data, y_data, batch_size, preprocess_fn=None, shuffle=False, **kwargs
):
if shuffle:
perm = np.random.permutation(len(x_data))
x_data = x_data[perm]
y_data = y_data[perm]
self.x_data = x_data
self.y_data = y_data
self.preprocess_fn = preprocess_fn
self.batch_size = batch_size
super().__init__(*kwargs)
def __len__(self):
return len(self.x_data) // self.batch_size
def __getitem__(self, idx):
batch_x, batch_y = [], []
for i in range(idx * self.batch_size, (idx + 1) * self.batch_size):
x, y = self.x_data[i], self.y_data[i]
if self.preprocess_fn:
x, y = self.preprocess_fn(x, y)
batch_x.append(x)
batch_y.append(y)
batch_x = ops.stack(batch_x, axis=0)
batch_y = ops.stack(batch_y, axis=0)
return batch_x, batch_y
train_ds = Dataset(
x_train, y_train, config["batch_size"], preprocess_fn=train_map_fn, shuffle=True
)
val_ds = Dataset(x_val, y_val, config["batch_size"], preprocess_fn=test_map_fn)
test_ds = Dataset(x_test, y_test, config["batch_size"], preprocess_fn=test_map_fn)
論文中的一段摘錄
在大腦中,短期記憶和長期記憶以一種特殊的方式發展。短期記憶可以非常快速地改變,以對即時的感官輸入和感知做出反應。相比之下,長期記憶變化緩慢,具有高度選擇性,並涉及重複的鞏固。
受短期和長期記憶的啟發,作者引入了快速流和慢速流計算。快速流具有高容量的短期記憶,可以快速對感官輸入做出反應 (轉換器)。慢速流具有長期記憶,它以較慢的速度更新並總結最相關的信息 (循環)。
為了實現這個想法,我們需要
快速和慢速流引起所謂的資訊不對稱。兩個流透過一個注意力瓶頸相互作用。圖 1 顯示了模型的架構。
![]() |
---|
圖 1:模型的架構。(來源:https://arxiv.org/abs/2205.14794) |
作者還提出了一個 PyTorch 風格的偽代碼,如演算法 1 所示。
![]() |
---|
演算法 1:PyTorch 風格的偽代碼。(來源:https://arxiv.org/abs/2205.14794) |
PatchEmbedding
層這個自定義的 keras.layers.Layer
可用於從影像生成圖塊,並使用 keras.layers.Embedding
將它們轉換為更高維度的嵌入空間。圖塊操作是使用 keras.layers.Conv2D
實例完成的。
一旦完成影像的圖塊化,我們將重新塑形影像圖塊,以獲得一個扁平化的表示,其中維度的數量是嵌入維度。在此階段,我們還將位置資訊注入到令牌中。
取得令牌後,我們將它們分塊。分塊操作涉及從嵌入輸出中取得固定大小的序列來建立「區塊」,然後將這些區塊用作模型的最終輸入。
class PatchEmbedding(layers.Layer):
"""Image to Patch Embedding.
Args:
image_size (`Tuple[int]`): Size of the input image.
patch_size (`Tuple[int]`): Size of the patch.
embed_dim (`int`): Dimension of the embedding.
chunk_size (`int`): Number of patches to be chunked.
"""
def __init__(
self,
image_size,
patch_size,
embed_dim,
chunk_size,
**kwargs,
):
super().__init__(**kwargs)
# Compute the patch resolution.
patch_resolution = [
image_size[0] // patch_size[0],
image_size[1] // patch_size[1],
]
# Store the parameters.
self.image_size = image_size
self.patch_size = patch_size
self.embed_dim = embed_dim
self.patch_resolution = patch_resolution
self.num_patches = patch_resolution[0] * patch_resolution[1]
# Define the positions of the patches.
self.positions = ops.arange(start=0, stop=self.num_patches, step=1)
# Create the layers.
self.projection = layers.Conv2D(
filters=embed_dim,
kernel_size=patch_size,
strides=patch_size,
name="projection",
)
self.flatten = layers.Reshape(
target_shape=(-1, embed_dim),
name="flatten",
)
self.position_embedding = layers.Embedding(
input_dim=self.num_patches,
output_dim=embed_dim,
name="position_embedding",
)
self.layernorm = keras.layers.LayerNormalization(
epsilon=1e-5,
name="layernorm",
)
self.chunking_layer = layers.Reshape(
target_shape=(self.num_patches // chunk_size, chunk_size, embed_dim),
name="chunking_layer",
)
def call(self, inputs):
# Project the inputs to the embedding dimension.
x = self.projection(inputs)
# Flatten the pathces and add position embedding.
x = self.flatten(x)
x = x + self.position_embedding(self.positions)
# Normalize the embeddings.
x = self.layernorm(x)
# Chunk the tokens.
x = self.chunking_layer(x)
return x
FeedForwardNetwork
層這個自定義的 keras.layers.Layer
實例允許我們定義一個通用的 FFN 以及 dropout。
class FeedForwardNetwork(layers.Layer):
"""Feed Forward Network.
Args:
dims (`int`): Number of units in FFN.
dropout (`float`): Dropout probability for FFN.
"""
def __init__(self, dims, dropout, **kwargs):
super().__init__(**kwargs)
# Create the layers.
self.ffn = keras.Sequential(
[
layers.Dense(units=4 * dims, activation="gelu"),
layers.Dense(units=dims),
layers.Dropout(rate=dropout),
],
name="ffn",
)
self.layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="layernorm",
)
def call(self, inputs):
# Apply the FFN.
x = self.layernorm(inputs)
x = inputs + self.ffn(x)
return x
BaseAttention
層這個自定義的 keras.layers.Layer
實例是一個 super
/base
類別,它包裝了一個 keras.layers.MultiHeadAttention
層以及其他一些元件。這為我們模型中的所有注意力層/模組提供了基本的共同功能。
class BaseAttention(layers.Layer):
"""Base Attention Module.
Args:
num_heads (`int`): Number of attention heads.
key_dim (`int`): Size of each attention head for key.
dropout (`float`): Dropout probability for attention module.
"""
def __init__(self, num_heads, key_dim, dropout, **kwargs):
super().__init__(**kwargs)
self.multi_head_attention = layers.MultiHeadAttention(
num_heads=num_heads,
key_dim=key_dim,
dropout=dropout,
name="mha",
)
self.query_layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="q_layernorm",
)
self.key_layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="k_layernorm",
)
self.value_layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="v_layernorm",
)
self.attention_scores = None
def call(self, input_query, key, value):
# Apply the attention module.
query = self.query_layernorm(input_query)
key = self.key_layernorm(key)
value = self.value_layernorm(value)
(attention_outputs, attention_scores) = self.multi_head_attention(
query=query,
key=key,
value=value,
return_attention_scores=True,
)
# Save the attention scores for later visualization.
self.attention_scores = attention_scores
# Add the input to the attention output.
x = input_query + attention_outputs
return x
FeedForwardNetwork
層的 Attention
這個自定義的 keras.layers.Layer
實作結合了 BaseAttention
和 FeedForwardNetwork
元件,以開發一個將在模型中重複使用的區塊。此模組具有高度可自訂性和靈活性,允許在內部層進行變更。
class AttentionWithFFN(layers.Layer):
"""Attention with Feed Forward Network.
Args:
ffn_dims (`int`): Number of units in FFN.
ffn_dropout (`float`): Dropout probability for FFN.
num_heads (`int`): Number of attention heads.
key_dim (`int`): Size of each attention head for key.
attn_dropout (`float`): Dropout probability for attention module.
"""
def __init__(
self,
ffn_dims,
ffn_dropout,
num_heads,
key_dim,
attn_dropout,
**kwargs,
):
super().__init__(**kwargs)
# Create the layers.
self.fast_stream_attention = BaseAttention(
num_heads=num_heads,
key_dim=key_dim,
dropout=attn_dropout,
name="base_attn",
)
self.slow_stream_attention = BaseAttention(
num_heads=num_heads,
key_dim=key_dim,
dropout=attn_dropout,
name="base_attn",
)
self.ffn = FeedForwardNetwork(
dims=ffn_dims,
dropout=ffn_dropout,
name="ffn",
)
self.attention_scores = None
def build(self, input_shape):
self.built = True
def call(self, query, key, value, stream="fast"):
# Apply the attention module.
attention_layer = {
"fast": self.fast_stream_attention,
"slow": self.slow_stream_attention,
}[stream]
if len(query.shape) == 2:
query = ops.expand_dims(query, -1)
if len(key.shape) == 2:
key = ops.expand_dims(key, -1)
if len(value.shape) == 2:
value = ops.expand_dims(value, -1)
x = attention_layer(query, key, value)
# Save the attention scores for later visualization.
self.attention_scores = attention_layer.attention_scores
# Apply the FFN.
x = self.ffn(x)
return x
演算法 1 (偽代碼) 使用 for 迴圈描述了循環。迴圈確實使實作更簡單,但會損害訓練時間。在本節中,我們將自定義循環邏輯包裝在 CustomRecurrentCell
內部。然後,這個自定義的 cell 將被包裝在 Keras RNN API 中,這使得整個程式碼可以向量化。
這個實作為 keras.layers.Layer
的自定義 cell 是模型邏輯的組成部分。cell 的功能可以分為兩個部分:- 慢速流 (時間潛在瓶頸):
AttentionWithFFN
層,該層解析先前慢速流的輸出、一個中間隱藏表示 (這是時間潛在瓶頸中的潛在),作為 Query,並將最新快速流的輸出作為 Key 和 Value。此層也可以被視為交叉注意力層。AttentionWithFFN
層。此流包含依序排列的 n 層 SelfAttention
和 CrossAttention
。class CustomRecurrentCell(layers.Layer):
"""Custom Recurrent Cell.
Args:
chunk_size (`int`): Number of tokens in a chunk.
r (`int`): One Cross Attention per **r** Self Attention.
num_layers (`int`): Number of layers.
ffn_dims (`int`): Number of units in FFN.
ffn_dropout (`float`): Dropout probability for FFN.
num_heads (`int`): Number of attention heads.
key_dim (`int`): Size of each attention head for key.
attn_dropout (`float`): Dropout probability for attention module.
"""
def __init__(
self,
chunk_size,
r,
num_layers,
ffn_dims,
ffn_dropout,
num_heads,
key_dim,
attn_dropout,
**kwargs,
):
super().__init__(**kwargs)
# Save the arguments.
self.chunk_size = chunk_size
self.r = r
self.num_layers = num_layers
self.ffn_dims = ffn_dims
self.ffn_droput = ffn_dropout
self.num_heads = num_heads
self.key_dim = key_dim
self.attn_dropout = attn_dropout
# Create state_size. This is important for
# custom recurrence logic.
self.state_size = chunk_size * ffn_dims
self.get_attention_scores = False
self.attention_scores = []
# Perceptual Module
perceptual_module = list()
for layer_idx in range(num_layers):
perceptual_module.append(
AttentionWithFFN(
ffn_dims=ffn_dims,
ffn_dropout=ffn_dropout,
num_heads=num_heads,
key_dim=key_dim,
attn_dropout=attn_dropout,
name=f"pm_self_attn_{layer_idx}",
)
)
if layer_idx % r == 0:
perceptual_module.append(
AttentionWithFFN(
ffn_dims=ffn_dims,
ffn_dropout=ffn_dropout,
num_heads=num_heads,
key_dim=key_dim,
attn_dropout=attn_dropout,
name=f"pm_cross_attn_ffn_{layer_idx}",
)
)
self.perceptual_module = perceptual_module
# Temporal Latent Bottleneck Module
self.tlb_module = AttentionWithFFN(
ffn_dims=ffn_dims,
ffn_dropout=ffn_dropout,
num_heads=num_heads,
key_dim=key_dim,
attn_dropout=attn_dropout,
name=f"tlb_cross_attn_ffn",
)
def build(self, input_shape):
self.built = True
def call(self, inputs, states):
# inputs => (batch, chunk_size, dims)
# states => [(batch, chunk_size, units)]
slow_stream = ops.reshape(states[0], (-1, self.chunk_size, self.ffn_dims))
fast_stream = inputs
for layer_idx, layer in enumerate(self.perceptual_module):
fast_stream = layer(
query=fast_stream, key=fast_stream, value=fast_stream, stream="fast"
)
if layer_idx % self.r == 0:
fast_stream = layer(
query=fast_stream, key=slow_stream, value=slow_stream, stream="slow"
)
slow_stream = self.tlb_module(
query=slow_stream, key=fast_stream, value=fast_stream
)
# Save the attention scores for later visualization.
if self.get_attention_scores:
self.attention_scores.append(self.tlb_module.attention_scores)
return fast_stream, [
ops.reshape(slow_stream, (-1, self.chunk_size * self.ffn_dims))
]
TemporalLatentBottleneckModel
用於封裝完整的模型在這裡,我們只是封裝完整的模型,以便將其公開以進行訓練。
class TemporalLatentBottleneckModel(keras.Model):
"""Model Trainer.
Args:
patch_layer ([`keras.layers.Layer`](/api/layers/base_layer#layer-class)): Patching layer.
custom_cell ([`keras.layers.Layer`](/api/layers/base_layer#layer-class)): Custom Recurrent Cell.
"""
def __init__(self, patch_layer, custom_cell, unroll_loops=False, **kwargs):
super().__init__(**kwargs)
self.patch_layer = patch_layer
self.rnn = layers.RNN(custom_cell, unroll=unroll_loops, name="rnn")
self.gap = layers.GlobalAveragePooling1D(name="gap")
self.head = layers.Dense(10, activation="softmax", dtype="float32", name="head")
def call(self, inputs):
x = self.patch_layer(inputs)
x = self.rnn(x)
x = self.gap(x)
outputs = self.head(x)
return outputs
為了開始訓練,我們現在分別定義元件,並將它們作為引數傳遞給我們的包裝類別,該類別將準備好用於訓練的最終模型。我們定義一個 PatchEmbed
層和基於 CustomCell
的 RNN。
# Build the model.
patch_layer = PatchEmbedding(
image_size=(config["image_size"], config["image_size"]),
patch_size=(config["patch_size"], config["patch_size"]),
embed_dim=config["embed_dim"],
chunk_size=config["chunk_size"],
)
custom_rnn_cell = CustomRecurrentCell(
chunk_size=config["chunk_size"],
r=config["r"],
num_layers=config["num_layers"],
ffn_dims=config["embed_dim"],
ffn_dropout=config["ffn_drop"],
num_heads=config["num_heads"],
key_dim=config["embed_dim"],
attn_dropout=config["attn_drop"],
)
model = TemporalLatentBottleneckModel(
patch_layer=patch_layer,
custom_cell=custom_rnn_cell,
)
我們使用 AdamW
優化器,因為它已證明從優化的角度來看在幾個基準任務上表現良好。它是 keras.optimizers.Adam
優化器的一個版本,同時也加入了權重衰減。
對於損失函數,我們使用 keras.losses.SparseCategoricalCrossentropy
函數,該函數使用預測和實際 logits 之間的簡單交叉熵。我們也計算數據的準確性作為健全性檢查。
optimizer = AdamW(
learning_rate=config["learning_rate"], weight_decay=config["weight_decay"]
)
model.compile(
optimizer=optimizer,
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
model.fit()
訓練模型我們傳遞訓練數據集並執行訓練。
history = model.fit(
train_ds,
epochs=config["epochs"],
validation_data=val_ds,
)
Epoch 1/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1270s 62s/step - accuracy: 0.1166 - loss: 3.1132 - val_accuracy: 0.1486 - val_loss: 2.2887
Epoch 2/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.1798 - loss: 2.2290 - val_accuracy: 0.2249 - val_loss: 2.1083
Epoch 3/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1150s 60s/step - accuracy: 0.2371 - loss: 2.0661 - val_accuracy: 0.2610 - val_loss: 2.0294
Epoch 4/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1150s 60s/step - accuracy: 0.2631 - loss: 1.9997 - val_accuracy: 0.2765 - val_loss: 2.0008
Epoch 5/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.2869 - loss: 1.9634 - val_accuracy: 0.2985 - val_loss: 1.9578
Epoch 6/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.3048 - loss: 1.9314 - val_accuracy: 0.3055 - val_loss: 1.9324
Epoch 7/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.3136 - loss: 1.8977 - val_accuracy: 0.3209 - val_loss: 1.9050
Epoch 8/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.3238 - loss: 1.8717 - val_accuracy: 0.3231 - val_loss: 1.8874
Epoch 9/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.3414 - loss: 1.8453 - val_accuracy: 0.3445 - val_loss: 1.8334
Epoch 10/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.3469 - loss: 1.8119 - val_accuracy: 0.3591 - val_loss: 1.8019
Epoch 11/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.3648 - loss: 1.7712 - val_accuracy: 0.3793 - val_loss: 1.7513
Epoch 12/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.3730 - loss: 1.7332 - val_accuracy: 0.3667 - val_loss: 1.7464
Epoch 13/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1148s 60s/step - accuracy: 0.3918 - loss: 1.6986 - val_accuracy: 0.3995 - val_loss: 1.6843
Epoch 14/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1147s 60s/step - accuracy: 0.3975 - loss: 1.6679 - val_accuracy: 0.4026 - val_loss: 1.6602
Epoch 15/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4078 - loss: 1.6400 - val_accuracy: 0.3990 - val_loss: 1.6536
Epoch 16/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4135 - loss: 1.6224 - val_accuracy: 0.4216 - val_loss: 1.6144
Epoch 17/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1147s 60s/step - accuracy: 0.4254 - loss: 1.5884 - val_accuracy: 0.4281 - val_loss: 1.5788
Epoch 18/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4383 - loss: 1.5614 - val_accuracy: 0.4294 - val_loss: 1.5731
Epoch 19/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4419 - loss: 1.5440 - val_accuracy: 0.4338 - val_loss: 1.5633
Epoch 20/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4439 - loss: 1.5268 - val_accuracy: 0.4430 - val_loss: 1.5211
Epoch 21/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1147s 60s/step - accuracy: 0.4509 - loss: 1.5108 - val_accuracy: 0.4504 - val_loss: 1.5054
Epoch 22/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4629 - loss: 1.4828 - val_accuracy: 0.4563 - val_loss: 1.4974
Epoch 23/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1145s 60s/step - accuracy: 0.4660 - loss: 1.4682 - val_accuracy: 0.4647 - val_loss: 1.4794
Epoch 24/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4680 - loss: 1.4524 - val_accuracy: 0.4640 - val_loss: 1.4681
Epoch 25/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1145s 60s/step - accuracy: 0.4786 - loss: 1.4297 - val_accuracy: 0.4663 - val_loss: 1.4496
Epoch 26/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4889 - loss: 1.4149 - val_accuracy: 0.4769 - val_loss: 1.4350
Epoch 27/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4925 - loss: 1.4009 - val_accuracy: 0.4808 - val_loss: 1.4317
Epoch 28/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1145s 60s/step - accuracy: 0.4907 - loss: 1.3994 - val_accuracy: 0.4810 - val_loss: 1.4307
Epoch 29/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.5000 - loss: 1.3832 - val_accuracy: 0.4844 - val_loss: 1.3996
Epoch 30/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.5076 - loss: 1.3592 - val_accuracy: 0.4890 - val_loss: 1.3961
---
## Visualize training metrics
The `model.fit()` will return a `history` object, which stores the values of the metrics
generated during the training run (but it is ephemeral and needs to be saved manually).
We now display the Loss and Accuracy curves for the training and validation sets.
```python
plt.plot(history.history["loss"], label="loss")
plt.plot(history.history["val_loss"], label="val_loss")
plt.legend()
plt.show()
plt.plot(history.history["accuracy"], label="accuracy")
plt.plot(history.history["val_accuracy"], label="val_accuracy")
plt.legend()
plt.show()
def score_to_viz(chunk_score):
# get the most attended token
chunk_viz = ops.max(chunk_score, axis=-2)
# get the mean across heads
chunk_viz = ops.mean(chunk_viz, axis=1)
return chunk_viz
# Get a batch of images and labels from the testing dataset
images, labels = next(iter(test_ds))
# Create a new model instance that is executed eagerly to allow saving
# attention scores. This also requires unrolling loops
eager_model = TemporalLatentBottleneckModel(
patch_layer=patch_layer, custom_cell=custom_rnn_cell, unroll_loops=True
)
eager_model.compile(run_eagerly=True, jit_compile=False)
model.save("weights.keras")
eager_model.load_weights("weights.keras")
# Set the get_attn_scores flag to True
eager_model.rnn.cell.get_attention_scores = True
# Run the model with the testing images and grab the
# attention scores.
outputs = eager_model(images)
list_chunk_scores = eager_model.rnn.cell.attention_scores
# Process the attention scores in order to visualize them
num_chunks = (config["image_size"] // config["patch_size"]) ** 2 // config["chunk_size"]
list_chunk_viz = [score_to_viz(x) for x in list_chunk_scores[-num_chunks:]]
chunk_viz = ops.concatenate(list_chunk_viz, axis=-1)
chunk_viz = ops.reshape(
chunk_viz,
(
config["batch_size"],
config["image_size"] // config["patch_size"],
config["image_size"] // config["patch_size"],
1,
),
)
upsampled_heat_map = layers.UpSampling2D(
size=(4, 4), interpolation="bilinear", dtype="float32"
)(chunk_viz)
# Sample a random image
index = random.randint(0, config["batch_size"])
orig_image = images[index]
overlay_image = upsampled_heat_map[index, ..., 0]
if keras.backend.backend() == "torch":
# when using the torch backend, we are required to ensure that the
# image is copied from the GPU
orig_image = orig_image.cpu().detach().numpy()
overlay_image = overlay_image.cpu().detach().numpy()
# Plot the visualization
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))
ax[0].imshow(orig_image)
ax[0].set_title("Original:")
ax[0].axis("off")
image = ax[1].imshow(orig_image)
ax[1].imshow(
overlay_image,
cmap="inferno",
alpha=0.6,
extent=image.get_extent(),
)
ax[1].set_title("TLB Attention:")
plt.show()